These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33729936)

  • 1. Discrete Approximations of Acoustic Source Distributions.
    Bilbao S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2602-2605. PubMed ID: 33729936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling continuous source distributions in wave-based virtual acoustics.
    Bilbao S; Ahrens J
    J Acoust Soc Am; 2020 Dec; 148(6):3951. PubMed ID: 33379911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representing arbitrary acoustic source and sensor distributions in Fourier collocation methods.
    Wise ES; Cox BT; Jaros J; Treeby BE
    J Acoust Soc Am; 2019 Jul; 146(1):278. PubMed ID: 31370581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method.
    Treeby BE; Jaros J; Rendell AP; Cox BT
    J Acoust Soc Am; 2012 Jun; 131(6):4324-36. PubMed ID: 22712907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Incorporating source directivity in wave-based virtual acoustics: Time-domain models and fitting to measured data.
    Bilbao S; Ahrens J; Hamilton B
    J Acoust Soc Am; 2019 Oct; 146(4):2692. PubMed ID: 31671973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations.
    Drainville RA; Curiel L; Pichardo S
    J Acoust Soc Am; 2019 Dec; 146(6):4382. PubMed ID: 31893698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporating directivity in the Fourier pseudospectral time-domain method using spherical harmonics.
    Georgiou F; Hornikx M
    J Acoust Soc Am; 2016 Aug; 140(2):855. PubMed ID: 27586717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating Focused Ultrasound Transducers Using Discrete Sources on Regular Cartesian Grids.
    Martin E; Ling YT; Treeby BE
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Oct; 63(10):1535-1542. PubMed ID: 27541793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear ultrasound simulation in an axisymmetric coordinate system using a k-space pseudospectral method.
    Treeby BE; Wise ES; Kuklis F; Jaros J; Cox BT
    J Acoust Soc Am; 2020 Oct; 148(4):2288. PubMed ID: 33138501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling impedance boundary conditions and acoustic barriers using the immersed boundary method: The three-dimensional case.
    Bilbao S
    J Acoust Soc Am; 2023 Aug; 154(2):874-885. PubMed ID: 37566717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locally conformal method for acoustic finite-difference time-domain modeling of rigid surfaces.
    Tolan JG; Schneider JB
    J Acoust Soc Am; 2003 Nov; 114(5):2575-81. PubMed ID: 14649994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the Fourier pseudospectral time-domain method in orthogonal curvilinear coordinates for near-rigid moderately curved surfaces.
    Hornikx M; Dragna D
    J Acoust Soc Am; 2015 Jul; 138(1):425-35. PubMed ID: 26233041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of thermally induced photoacoustic wave propagation using a pseudospectral time-domain method.
    Sheu YL; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1104-12. PubMed ID: 19473928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media.
    Liu QH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(4):1044-55. PubMed ID: 18244259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations.
    Maeda K; Colonius T
    Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A k-space method for large-scale models of wave propagation in tissue.
    Mast TD; Souriau LP; Liu DL; Tabei M; Nachman AI; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):341-54. PubMed ID: 11370348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compact source condition for modelling focused fields using the pseudospectral time-domain method.
    Munro PR; Engelke D; Sampson DD
    Opt Express; 2014 Mar; 22(5):5599-613. PubMed ID: 24663901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of volume conductor and source models to localize epileptic foci.
    Fuchs M; Wagner M; Kastner J
    J Clin Neurophysiol; 2007 Apr; 24(2):101-19. PubMed ID: 17414966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variational properties of the discrete variable representation: discrete variable representation via effective operators.
    Szalay V; Ádám P
    J Chem Phys; 2012 Aug; 137(6):064118. PubMed ID: 22897266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pseudospectral method for optimal control of open quantum systems.
    Li JS; Ruths J; Stefanatos D
    J Chem Phys; 2009 Oct; 131(16):164110. PubMed ID: 19894930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.