These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33729938)

  • 1. Layer-Output Guided Complementary Attention Learning for Image Defocus Blur Detection.
    Li J; Fan D; Yang L; Gu S; Lu G; Xu Y; Zhang D
    IEEE Trans Image Process; 2021; 30():3748-3763. PubMed ID: 33729938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defocus Blur Detection via Multi-Stream Bottom-Top-Bottom Network.
    Zhao W; Zhao F; Wang D; Lu H
    IEEE Trans Pattern Anal Mach Intell; 2020 Aug; 42(8):1884-1897. PubMed ID: 30908190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Global to Local: Multi-Patch and Multi-Scale Contrastive Similarity Learning for Unsupervised Defocus Blur Detection.
    Li J; Liang B; Lu X; Li M; Lu G; Xu Y
    IEEE Trans Image Process; 2023 Feb; PP():. PubMed ID: 37022428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Similarity Loss for Learning to Fuse Multi-Focus Images.
    Yan X; Gilani SZ; Qin H; Mian A
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33233568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Local Metric for Defocus Blur Detection Based on CNN Feature Learning.
    Zeng K; Wang Y; Mao J; Liu J; Peng W; Chen N
    IEEE Trans Image Process; 2019 May; 28(5):2107-2115. PubMed ID: 30452362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image Deblurring Using Multi-Stream Bottom-Top-Bottom Attention Network and Global Information-Based Fusion and Reconstruction Network.
    Zhou Q; Ding M; Zhang X
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32635206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical Recurrent Neural Hashing for Image Retrieval With Hierarchical Convolutional Features.
    Lu X; Chen Y; Li X
    IEEE Trans Image Process; 2018 Jan.; 27(1):106-120. PubMed ID: 28952940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defocus Image Deblurring Network With Defocus Map Estimation as Auxiliary Task.
    Ma H; Liu S; Liao Q; Zhang J; Xue JH
    IEEE Trans Image Process; 2022; 31():216-226. PubMed ID: 34793301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DRPL: Deep Regression Pair Learning For Multi-Focus Image Fusion.
    Li J; Guo X; Lu G; Zhang B; Xu Y; Wu F; Zhang D
    IEEE Trans Image Process; 2020 Mar; ():. PubMed ID: 32142440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating spatially varying defocus blur from a single image.
    Zhu X; Cohen S; Schiller S; Milanfar P
    IEEE Trans Image Process; 2013 Dec; 22(12):4879-91. PubMed ID: 23974627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Multi-Scale Feature Learning for Defocus Blur Estimation.
    Karaali A; Harte N; Jung CR
    IEEE Trans Image Process; 2022; 31():1097-1106. PubMed ID: 34990362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MA-GANet: A Multi-Attention Generative Adversarial Network for Defocus Blur Detection.
    Jiang Z; Xu X; Zhang L; Zhang C; Foo CS; Zhu C
    IEEE Trans Image Process; 2022; 31():3494-3508. PubMed ID: 35533163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeFusionNET: Defocus Blur Detection via Recurrently Fusing and Refining Discriminative Multi-Scale Deep Features.
    Tang C; Liu X; Zheng X; Li W; Xiong J; Wang L; Zomaya AY; Longo A
    IEEE Trans Pattern Anal Mach Intell; 2022 Feb; 44(2):955-968. PubMed ID: 32759080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defocus Blur Detection Attack via Mutual-Referenced Feature Transfer.
    Zhao W; Wang M; Wei F; Wang H; He Y; Lu H
    IEEE Trans Neural Netw Learn Syst; 2024 Jul; 35(7):9162-9173. PubMed ID: 36374887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-channel residual network model for accurate estimation of spatially-varying and depth-dependent defocus kernels.
    Cao Y; Ye Z; He Z; Yang J; Cao Y; Tisse CL; Yang MY
    Opt Express; 2020 Jan; 28(2):2263-2275. PubMed ID: 32121920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joint Depth and Defocus Estimation From a Single Image Using Physical Consistency.
    Zhang A; Sun J
    IEEE Trans Image Process; 2021; 30():3419-3433. PubMed ID: 33651692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handling noise in single image defocus map estimation by using directional filters.
    Yu X; Zhao X; Sui Y; Zhang L
    Opt Lett; 2014 Nov; 39(21):6281-4. PubMed ID: 25361334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying Discriminative Features for Blur Detection.
    Pang Y; Zhu H; Li X; Li X
    IEEE Trans Cybern; 2016 Oct; 46(10):2220-2227. PubMed ID: 26357417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defocus Blur Detection via Boosting Diversity of Deep Ensemble Networks.
    Zhao W; Hou X; He Y; Lu H
    IEEE Trans Image Process; 2021; 30():5426-5438. PubMed ID: 34097609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defocus Blur Detection and Estimation from Imaging Sensors.
    Li J; Liu Z; Yao Y
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.