BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33730143)

  • 1. Isolation and recovery of extracellular vesicles using optically-induced dielectrophoresis on an integrated microfluidic platform.
    Chen YS; Lai CP; Chen C; Lee GB
    Lab Chip; 2021 Apr; 21(8):1475-1483. PubMed ID: 33730143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale sorting of extracellular vesicles
    Soong WJ; Wang CH; Chen C; Lee GB
    Lab Chip; 2024 Mar; 24(7):1965-1976. PubMed ID: 38357980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles.
    Gwak H; Park S; Yu H; Hyun KA; Jung HI
    Analyst; 2022 Mar; 147(6):1117-1127. PubMed ID: 35212324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Optically Induced Dielectrophoresis (ODEP) Microfluidic System for High-Performance Isolation and Purification of Bacteria.
    Chu PY; Yang CM; Huang KL; Wu AY; Hsieh CH; Chao AC; Wu MH
    Biosensors (Basel); 2023 Oct; 13(11):. PubMed ID: 37998128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-fidelity probing of the structure and heterogeneity of extracellular vesicles by resonance-enhanced atomic force microscopy infrared spectroscopy.
    Kim SY; Khanal D; Kalionis B; Chrzanowski W
    Nat Protoc; 2019 Feb; 14(2):576-593. PubMed ID: 30651586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and analysis of extracellular vesicles in a Morpho butterfly wing-integrated microvortex biochip.
    Han S; Xu Y; Sun J; Liu Y; Zhao Y; Tao W; Chai R
    Biosens Bioelectron; 2020 Apr; 154():112073. PubMed ID: 32056968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity-Based Enrichment of Extracellular Vesicles with Lipid Nanoprobes.
    Wan Y; Maurer M; Zheng SY
    Methods Mol Biol; 2022; 2394():185-197. PubMed ID: 35094329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Strategies for Extracellular Vesicle Isolation: Towards Clinical Applications.
    Meggiolaro A; Moccia V; Brun P; Pierno M; Mistura G; Zappulli V; Ferraro D
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system.
    Han BH; Kim S; Seo G; Heo Y; Chung S; Kang JY
    Lab Chip; 2020 Sep; 20(19):3552-3559. PubMed ID: 32808641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From Conventional to Microfluidic: Progress in Extracellular Vesicle Separation and Individual Characterization.
    Chen M; Lin S; Zhou C; Cui D; Haick H; Tang N
    Adv Healthc Mater; 2023 Mar; 12(8):e2202437. PubMed ID: 36541411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a microfluidic droplet platform with an antibody-free magnetic-bead-based strategy for high through-put and efficient EVs isolation.
    Morani M; Taverna M; Krupova Z; Alexandre L; Defrenaix P; Mai TD
    Talanta; 2022 Nov; 249():123625. PubMed ID: 35688075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic Size Exclusion Chromatography (μSEC) for Extracellular Vesicles and Plasma Protein Separation.
    Leong SY; Ong HB; Tay HM; Kong F; Upadya M; Gong L; Dao M; Dalan R; Hou HW
    Small; 2022 Feb; 18(6):e2104470. PubMed ID: 34984816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Extracellular Vesicle Analysis Using Droplet Microfluidics.
    Reynolds DE; Galanis G; Wang Y; Ko J
    Methods Mol Biol; 2023; 2689():211-220. PubMed ID: 37430057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer.
    Liang LG; Kong MQ; Zhou S; Sheng YF; Wang P; Yu T; Inci F; Kuo WP; Li LJ; Demirci U; Wang S
    Sci Rep; 2017 Apr; 7():46224. PubMed ID: 28436447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of cancer-derived extracellular vesicle subpopulations by a size-selective microfluidic platform.
    Chen Z; Yang Y; Yamaguchi H; Hung MC; Kameoka J
    Biomicrofluidics; 2020 May; 14(3):034113. PubMed ID: 32577148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A magnetic bead-mediated selective adsorption strategy for extracellular vesicle separation and purification.
    Fang X; Chen C; Liu B; Ma Z; Hu F; Li H; Gu H; Xu H
    Acta Biomater; 2021 Apr; 124():336-347. PubMed ID: 33578055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Performance Gel-Free and Label-Free Size Fractionation of Extracellular Vesicles with Two-Dimensional Electrophoresis in a Microfluidic Artificial Sieve.
    Bu Y; Wang J; Ni S; Lu Z; Guo Y; Yobas L
    Anal Chem; 2024 Feb; 96(8):3508-3516. PubMed ID: 38364051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated microfluidic system for on-chip enrichment and quantification of circulating extracellular vesicles from whole blood.
    Chen YS; Ma YD; Chen C; Shiesh SC; Lee GB
    Lab Chip; 2019 Oct; 19(19):3305-3315. PubMed ID: 31495861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracellular vesicles in endothelial cells: from mediators of cell-to-cell communication to cargo delivery tools.
    Desideri E; Ciccarone F; Ciriolo MR; Fratantonio D
    Free Radic Biol Med; 2021 Aug; 172():508-520. PubMed ID: 34214634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles.
    Reátegui E; van der Vos KE; Lai CP; Zeinali M; Atai NA; Aldikacti B; Floyd FP; H Khankhel A; Thapar V; Hochberg FH; Sequist LV; Nahed BV; S Carter B; Toner M; Balaj L; T Ting D; Breakefield XO; Stott SL
    Nat Commun; 2018 Jan; 9(1):175. PubMed ID: 29330365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.