These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 33730147)
1. The microtubule-associated protein WDL4 modulates auxin distribution to promote apical hook opening in Arabidopsis. Deng J; Wang X; Liu Z; Mao T Plant Cell; 2021 Jul; 33(6):1927-1944. PubMed ID: 33730147 [TBL] [Abstract][Full Text] [Related]
2. WAG2 represses apical hook opening downstream from gibberellin and PHYTOCHROME INTERACTING FACTOR 5. Willige BC; Ogiso-Tanaka E; Zourelidou M; Schwechheimer C Development; 2012 Nov; 139(21):4020-8. PubMed ID: 22992959 [TBL] [Abstract][Full Text] [Related]
3. The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Vandenbussche F; Petrásek J; Zádníková P; Hoyerová K; Pesek B; Raz V; Swarup R; Bennett M; Zazímalová E; Benková E; Van Der Straeten D Development; 2010 Feb; 137(4):597-606. PubMed ID: 20110325 [TBL] [Abstract][Full Text] [Related]
4. Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Zádníková P; Petrásek J; Marhavy P; Raz V; Vandenbussche F; Ding Z; Schwarzerová K; Morita MT; Tasaka M; Hejátko J; Van Der Straeten D; Friml J; Benková E Development; 2010 Feb; 137(4):607-17. PubMed ID: 20110326 [TBL] [Abstract][Full Text] [Related]
6. Hierarchy of hormone action controlling apical hook development in Arabidopsis. Gallego-Bartolomé J; Arana MV; Vandenbussche F; Zádníková P; Minguet EG; Guardiola V; Van Der Straeten D; Benkova E; Alabadí D; Blázquez MA Plant J; 2011 Aug; 67(4):622-34. PubMed ID: 21535259 [TBL] [Abstract][Full Text] [Related]
7. SAUR17 and SAUR50 Differentially Regulate PP2C-D1 during Apical Hook Development and Cotyledon Opening in Arabidopsis. Wang J; Sun N; Zhang F; Yu R; Chen H; Deng XW; Wei N Plant Cell; 2020 Dec; 32(12):3792-3811. PubMed ID: 33093148 [TBL] [Abstract][Full Text] [Related]
8. Coordinated regulation of apical hook development by gibberellins and ethylene in etiolated Arabidopsis seedlings. An F; Zhang X; Zhu Z; Ji Y; He W; Jiang Z; Li M; Guo H Cell Res; 2012 May; 22(5):915-27. PubMed ID: 22349459 [TBL] [Abstract][Full Text] [Related]
9. Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. van Rongen M; Bennett T; Ticchiarelli F; Leyser O PLoS Genet; 2019 Mar; 15(3):e1008023. PubMed ID: 30865619 [TBL] [Abstract][Full Text] [Related]
10. Interplay between Cell Wall and Auxin Mediates the Control of Differential Cell Elongation during Apical Hook Development. Aryal B; Jonsson K; Baral A; Sancho-Andres G; Routier-Kierzkowska AL; Kierzkowski D; Bhalerao RP Curr Biol; 2020 May; 30(9):1733-1739.e3. PubMed ID: 32197084 [TBL] [Abstract][Full Text] [Related]
11. External Mechanical Cues Reveal a Katanin-Independent Mechanism behind Auxin-Mediated Tissue Bending in Plants. Baral A; Aryal B; Jonsson K; Morris E; Demes E; Takatani S; Verger S; Xu T; Bennett M; Hamant O; Bhalerao RP Dev Cell; 2021 Jan; 56(1):67-80.e3. PubMed ID: 33434527 [TBL] [Abstract][Full Text] [Related]
12. Root gravity response module guides differential growth determining both root bending and apical hook formation in Zhu Q; Gallemí M; Pospíšil J; Žádníková P; Strnad M; Benková E Development; 2019 Sep; 146(17):. PubMed ID: 31391194 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. Wang Y; Yang L; Tang Y; Tang R; Jing Y; Zhang C; Zhang B; Li X; Cui Y; Zhang C; Shi J; Zhao F; Lan W; Luan S PLoS Biol; 2017 Dec; 15(12):e2004310. PubMed ID: 29283991 [TBL] [Abstract][Full Text] [Related]
14. High ambient temperature antagonizes ethylene-induced exaggerated apical hook formation in etiolated Arabidopsis seedlings. Jin H; Pang L; Fang S; Chu J; Li R; Zhu Z Plant Cell Environ; 2018 Dec; 41(12):2858-2868. PubMed ID: 30088270 [TBL] [Abstract][Full Text] [Related]
15. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation. Schuetz M; Berleth T; Mattsson J Plant Physiol; 2008 Oct; 148(2):870-80. PubMed ID: 18685044 [TBL] [Abstract][Full Text] [Related]
16. Clathrin-Mediated Auxin Efflux and Maxima Regulate Hypocotyl Hook Formation and Light-Stimulated Hook Opening in Arabidopsis. Yu Q; Zhang Y; Wang J; Yan X; Wang C; Xu J; Pan J Mol Plant; 2016 Jan; 9(1):101-112. PubMed ID: 26458873 [TBL] [Abstract][Full Text] [Related]
17. A loss-of-function mutation in the nucleoporin AtNUP160 indicates that normal auxin signalling is required for a proper ethylene response in Arabidopsis. Robles LM; Deslauriers SD; Alvarez AA; Larsen PB J Exp Bot; 2012 Mar; 63(5):2231-41. PubMed ID: 22238449 [TBL] [Abstract][Full Text] [Related]
18. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia. Chen MK; Wilson RL; Palme K; Ditengou FA; Shpak ED Plant Physiol; 2013 Aug; 162(4):1978-91. PubMed ID: 23821653 [TBL] [Abstract][Full Text] [Related]
19. Type-A response regulators are required for proper root apical meristem function through post-transcriptional regulation of PIN auxin efflux carriers. Zhang W; To JP; Cheng CY; Schaller GE; Kieber JJ Plant J; 2011 Oct; 68(1):1-10. PubMed ID: 21645147 [TBL] [Abstract][Full Text] [Related]
20. Cytokinin regulates apical hook development via the coordinated actions of EIN3/EIL1 and PIF transcription factors in Arabidopsis. Aizezi Y; Shu H; Zhang L; Zhao H; Peng Y; Lan H; Xie Y; Li J; Wang Y; Guo H; Jiang K J Exp Bot; 2022 Jan; 73(1):213-227. PubMed ID: 34459884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]