These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 33730177)
1. Genetically engineered rpsL merodiploidy impacts secondary metabolism and antibiotic resistance in Streptomyces. Koshla O; Lopatniuk M; Borys O; Misaki Y; Kravets V; Ostash I; Shemediuk A; Ochi K; Luzhetskyy A; Fedorenko V; Ostash B World J Microbiol Biotechnol; 2021 Mar; 37(4):62. PubMed ID: 33730177 [TBL] [Abstract][Full Text] [Related]
2. An aberrant protein synthesis activity is linked with antibiotic overproduction in rpsL mutants of Streptomyces coelicolor A3(2). Okamoto-Hosoya Y; Hosaka T; Ochi K Microbiology (Reading); 2003 Nov; 149(Pt 11):3299-3309. PubMed ID: 14600242 [TBL] [Abstract][Full Text] [Related]
3. Development of antibiotic-overproducing strains by site-directed mutagenesis of the rpsL gene in Streptomyces lividans. Okamoto-Hosoya Y; Okamoto S; Ochi K Appl Environ Microbiol; 2003 Jul; 69(7):4256-9. PubMed ID: 12839808 [TBL] [Abstract][Full Text] [Related]
5. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). Shima J; Hesketh A; Okamoto S; Kawamoto S; Ochi K J Bacteriol; 1996 Dec; 178(24):7276-84. PubMed ID: 8955413 [TBL] [Abstract][Full Text] [Related]
6. Effect of "ribosome engineering" on the transcription level and production of S. albus indigenous secondary metabolites. Lopatniuk M; Myronovskyi M; Nottebrock A; Busche T; Kalinowski J; Ostash B; Fedorenko V; Luzhetskyy A Appl Microbiol Biotechnol; 2019 Sep; 103(17):7097-7110. PubMed ID: 31324940 [TBL] [Abstract][Full Text] [Related]
7. Antibiotic overproduction by rpsL and rsmG mutants of various actinomycetes. Tanaka Y; Komatsu M; Okamoto S; Tokuyama S; Kaji A; Ikeda H; Ochi K Appl Environ Microbiol; 2009 Jul; 75(14):4919-22. PubMed ID: 19447953 [TBL] [Abstract][Full Text] [Related]
8. Improvement of A21978C production in Streptomyces roseosporus by reporter-guided rpsL mutation selection. Wang L; Zhao Y; Liu Q; Huang Y; Hu C; Liao G J Appl Microbiol; 2012 Jun; 112(6):1095-101. PubMed ID: 22486967 [TBL] [Abstract][Full Text] [Related]
9. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Tamehiro N; Hosaka T; Xu J; Hu H; Otake N; Ochi K Appl Environ Microbiol; 2003 Nov; 69(11):6412-7. PubMed ID: 14602594 [TBL] [Abstract][Full Text] [Related]
10. A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin. Hesketh A; Ochi K J Antibiot (Tokyo); 1997 Jun; 50(6):532-5. PubMed ID: 9268013 [No Abstract] [Full Text] [Related]
11. A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Wang G; Inaoka T; Okamoto S; Ochi K Antimicrob Agents Chemother; 2009 Mar; 53(3):1019-26. PubMed ID: 19104019 [TBL] [Abstract][Full Text] [Related]
12. The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics. Pelchovich G; Schreiber R; Zhuravlev A; Gophna U Int J Med Microbiol; 2013 Dec; 303(8):558-62. PubMed ID: 23972615 [TBL] [Abstract][Full Text] [Related]
13. Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2). Okamoto-Hosoya Y; Sato TA; Ochi K J Antibiot (Tokyo); 2000 Dec; 53(12):1424-7. PubMed ID: 11217811 [No Abstract] [Full Text] [Related]
14. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). Nishimura K; Hosaka T; Tokuyama S; Okamoto S; Ochi K J Bacteriol; 2007 May; 189(10):3876-83. PubMed ID: 17384192 [TBL] [Abstract][Full Text] [Related]
15. A suitable streptomycin-resistant mutant for constructing unmarked in-frame gene deletions using rpsL as a counter-selection marker. Tsai YK; Liou CH; Lin JC; Ma L; Fung CP; Chang FY; Siu LK PLoS One; 2014; 9(9):e109258. PubMed ID: 25268958 [TBL] [Abstract][Full Text] [Related]
16. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Yushchuk O; Ostash I; Vlasiuk I; Gren T; Luzhetskyy A; Kalinowski J; Fedorenko V; Ostash B Appl Microbiol Biotechnol; 2018 Oct; 102(19):8419-8428. PubMed ID: 30056513 [TBL] [Abstract][Full Text] [Related]
17. Use of rpsL as a Counterselectable Marker in Borrelia burgdorferi. Drecktrah D; Douglas JM; Samuels DS Appl Environ Microbiol; 2010 Feb; 76(3):985-7. PubMed ID: 19966024 [TBL] [Abstract][Full Text] [Related]
18. Molecular and functional analysis of the ribosomal L11 and S12 protein genes (rplK and rpsL) of Streptomyces coelicolor A3(2). Ochi K; Zhang D; Kawamoto S; Hesketh A Mol Gen Genet; 1997 Nov; 256(5):488-98. PubMed ID: 9413432 [TBL] [Abstract][Full Text] [Related]
19. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Hu H; Ochi K Appl Environ Microbiol; 2001 Apr; 67(4):1885-92. PubMed ID: 11282646 [TBL] [Abstract][Full Text] [Related]
20. Enhancement of salinomycin production by ribosome engineering in Streptomyces albus. Li D; Zhang J; Tian Y; Tan H Sci China Life Sci; 2019 Feb; 62(2):276-279. PubMed ID: 30659450 [No Abstract] [Full Text] [Related] [Next] [New Search]