These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33730196)

  • 1. Impact of atmospheric pollution on asthma and bronchitis based on lichen biomonitoring using IAP, IHI and GIS in Algiers Bay (Algeria).
    Ghennam K; Attou F; Abdoun F
    Environ Monit Assess; 2021 Mar; 193(4):198. PubMed ID: 33730196
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France).
    Gombert S; Asta J; Seaward MR
    Sci Total Environ; 2004 May; 324(1-3):183-99. PubMed ID: 15081705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of corticolous lichens for the assessment of ambient air quality along rural-urban ecosystems of tropics: a study in Sri Lanka.
    Yatawara M; Dayananda N
    Environ Monit Assess; 2019 Feb; 191(3):179. PubMed ID: 30796607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air quality monitoring system using lichens as bioindicators in Central Argentina.
    Estrabou C; Filippini E; Soria JP; Schelotto G; Rodriguez JM
    Environ Monit Assess; 2011 Nov; 182(1-4):375-83. PubMed ID: 21336488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Index of Atmospheric Purity (IAP) along elevation gradients in Gunung Jerai, Kedah, Malaysia.
    Rosli NS; Zulkifly S
    Environ Monit Assess; 2022 Jun; 194(7):496. PubMed ID: 35691975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a Geographic Information System and lichens to map air pollution in a tropical city: San José, Costa Rica.
    Bustamante EN; Monge-Nájera J; Méndez-Estrada VH
    Rev Biol Trop; 2013 Jun; 61(2):557-63. PubMed ID: 23885574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lichens as integrating air pollution monitors.
    Jeran Z; Jaćimović R; Batic F; Mavsar R
    Environ Pollut; 2002; 120(1):107-13. PubMed ID: 12199456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recalibration and validation of the Swiss lichen bioindication methods for air quality assessment.
    Herzig R; Schindler C; Urech M; Rihm B; Lötscher H; Thomann G
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28795-28810. PubMed ID: 32394262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of airborne trace elements in an urban area using lichens as biomonitor.
    Bozkurt Z
    Environ Monit Assess; 2017 Oct; 189(11):573. PubMed ID: 29046969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disentangling sources of trace element air pollution in complex urban areas by lichen biomonitoring. A case study in Milan (Italy).
    Contardo T; Vannini A; Sharma K; Giordani P; Loppi S
    Chemosphere; 2020 Oct; 256():127155. PubMed ID: 32470739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of lichens as ecological surrogates of air pollution in the subtropics: a case study in South Brazil.
    Koch NM; Branquinho C; Matos P; Pinho P; Lucheta F; Martins SM; Vargas VM
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20819-20834. PubMed ID: 27476857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.
    Wang W; Ying Y; Wu Q; Zhang H; Ma D; Xiao W
    Respir Med; 2015 Mar; 109(3):372-8. PubMed ID: 25682544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological response of the bioindicator Ramalina farinacea in relation to atmospheric deposition in an urban environment.
    Sujetovienė G; Sališiūtė J; Dagiliūtė R; Žaltauskaitė J
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26058-26065. PubMed ID: 32356070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains.
    Blasco M; Domeño C; Nerín C
    Anal Bioanal Chem; 2008 Jun; 391(3):759-71. PubMed ID: 18335215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial scales of variation in lichens: implications for sampling design in biomonitoring surveys.
    Giordani P; Brunialti G; Frati L; Incerti G; Ianesch L; Vallone E; Bacaro G; Maccherini S
    Environ Monit Assess; 2013 Feb; 185(2):1567-76. PubMed ID: 22628101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Searching for lichen indicator species: the application of self-organizing maps in air quality assessment-a case study from Balkan area (Serbia).
    Ristić S; Stamenković S; Stojković Piperac M; Šajn R; Kosanić M; Ranković B
    Environ Monit Assess; 2020 Oct; 192(11):693. PubMed ID: 33037947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal and spatial statistical analysis of ambient air quality of Assam (India).
    Bhunia GS; Ding D
    J Air Waste Manag Assoc; 2020 Aug; 70(8):775-794. PubMed ID: 32442037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geostatistical uncertainty of assessing air quality using high-spatial-resolution lichen data: A health study in the urban area of Sines, Portugal.
    Ribeiro MC; Pinho P; Branquinho C; Llop E; Pereira MJ
    Sci Total Environ; 2016 Aug; 562():740-750. PubMed ID: 27110985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lichens and moss as bioindicators and bioaccumulators in air pollution monitoring.
    Palmieri F; Neri R; Benco C; Serracca L
    J Environ Pathol Toxicol Oncol; 1997; 16(2-3):175-90. PubMed ID: 9275999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-criteria decision-making using GIS-AHP for air pollution problem in Igdir Province/Turkey.
    Sahin F; Kara MK; Koc A; Sahin G
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36215-36230. PubMed ID: 32556979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.