These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33730654)

  • 21. Improving the Sustainability of Catalytic Glycolysis of Complex PET Waste through Bio-Solvolysis.
    Amundarain I; López-Montenegro S; Fulgencio-Medrano L; Leivar J; Iruskieta A; Asueta A; Miguel-Fernández R; Arnaiz S; Pereda-Ayo B
    Polymers (Basel); 2024 Jan; 16(1):. PubMed ID: 38201807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low-Costing Bifunctional Ionic Liquid.
    Sun J; Liu D; Young RP; Cruz AG; Isern NG; Schuerg T; Cort JR; Simmons BA; Singh S
    ChemSusChem; 2018 Feb; 11(4):781-792. PubMed ID: 29178551
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator.
    Genta M; Iwaya T; Sasaki M; Goto M
    Waste Manag; 2007; 27(9):1167-77. PubMed ID: 16914302
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of Poly(Ethylene Terephthalate) Homogeneous Glycolysis Kinetics.
    Kirshanov KA; Toms RV; Balashov MS; Golubkov SS; Melnikov PV; Gervald AY
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514535
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate).
    Qian X; Jiang M; Dong W
    Trends Biotechnol; 2023 Oct; 41(10):1223-1226. PubMed ID: 37105776
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PET Glycolysis to BHET Efficiently Catalyzed by Stable and Recyclable Pd-Cu/γ-Al
    Zhou L; Qin E; Huang H; Wang Y; Li M
    Molecules; 2024 Sep; 29(18):. PubMed ID: 39339298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent advances in the discovery, characterization, and engineering of poly(ethylene terephthalate) (PET) hydrolases.
    Gao R; Pan H; Lian J
    Enzyme Microb Technol; 2021 Oct; 150():109868. PubMed ID: 34489027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Controlled Glycolysis of Poly(ethylene terephthalate) to Oligomers under Microwave Irradiation Using Antimony(III) Oxide.
    Mohammadi S; Bouldo MG; Enayati M
    ACS Appl Polym Mater; 2023 Aug; 5(8):6574-6584. PubMed ID: 37588081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrolysis of waste polyethylene terephthalate catalyzed by easily recyclable terephthalic acid.
    Yang W; Liu R; Li C; Song Y; Hu C
    Waste Manag; 2021 Nov; 135():267-274. PubMed ID: 34555688
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing PET Glycolysis with an Oyster Shell-Derived Catalyst Using Response Surface Methodology.
    Kim Y; Kim M; Hwang J; Im E; Moon GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental and Socioeconomic Impacts of Poly(ethylene terephthalate) (PET) Packaging Management Strategies in the EU.
    Andreasi Bassi S; Tonini D; Saveyn H; Astrup TF
    Environ Sci Technol; 2022 Jan; 56(1):501-511. PubMed ID: 34875164
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical Recycling of Used PET by Glycolysis Using Niobia-Based Catalysts.
    Shirazimoghaddam S; Amin I; Faria Albanese JA; Shiju NR
    ACS Eng Au; 2023 Feb; 3(1):37-44. PubMed ID: 36820227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recycling of waste PET into useful textile auxiliaries.
    Shukla SR; Harad AM; Jawale LS
    Waste Manag; 2008; 28(1):51-6. PubMed ID: 17207616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ti-Si composite glycol salts: depolymerization and repolymerization studies of PET.
    Yu Y; Shen G; Xu TJ; Wen R; Qiao YC; Cheng RC; Huo Y
    RSC Adv; 2023 Dec; 13(51):36337-36345. PubMed ID: 38093730
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal and enzymatic bio-depolymerization of waste post-consumer poly(ethylene terephthalate) (PET) bottles using
    Moyses DN; Teixeira DA; Waldow VA; Freire DMG; Castro AM
    3 Biotech; 2021 Oct; 11(10):435. PubMed ID: 34603913
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of reusable Ni/γ-Al
    Yan M; Yang Y; Chen F; Hantoko D; Pariatamby A; Kanchanatip E
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102560-102573. PubMed ID: 37668784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Significance of poly(ethylene terephthalate) (PET) substrate crystallinity on enzymatic degradation.
    Thomsen TB; Almdal K; Meyer AS
    N Biotechnol; 2023 Dec; 78():162-172. PubMed ID: 37939899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synergistic biodegradation of poly(ethylene terephthalate) using Microbacterium oleivorans and Thermobifida fusca cutinase.
    Yan ZF; Wang L; Xia W; Liu ZZ; Gu LT; Wu J
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4551-4560. PubMed ID: 34037842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Marine hydrocarbon-degrading bacteria breakdown poly(ethylene terephthalate) (PET).
    Denaro R; Aulenta F; Crisafi F; Di Pippo F; Cruz Viggi C; Matturro B; Tomei P; Smedile F; Martinelli A; Di Lisio V; Venezia C; Rossetti S
    Sci Total Environ; 2020 Dec; 749():141608. PubMed ID: 32836129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application.
    Rai P; Singh KP
    J Environ Manage; 2018 Feb; 207():249-261. PubMed ID: 29179114
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.