These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 33730937)
21. Design and synthesis of silicon-containing tubulin polymerization inhibitors: replacement of the ethylene moiety of combretastatin A-4 with a silicon linker. Nakamura M; Kajita D; Matsumoto Y; Hashimoto Y Bioorg Med Chem; 2013 Dec; 21(23):7381-91. PubMed ID: 24139940 [TBL] [Abstract][Full Text] [Related]
22. Bifunctional chiral selenium-containing 1,4-diarylazetidin-2-ones with potent antitumor activities by disrupting tubulin polymerization and inducing reactive oxygen species production. Tang H; Liang Y; Cheng J; Ding K; Wang Y Eur J Med Chem; 2021 Oct; 221():113531. PubMed ID: 34044345 [TBL] [Abstract][Full Text] [Related]
24. Synthesis, biological evaluation, and molecular modelling of new naphthalene-chalcone derivatives as potential anticancer agents on MCF-7 breast cancer cells by targeting tubulin colchicine binding site. Wang G; Liu W; Gong Z; Huang Y; Li Y; Peng Z J Enzyme Inhib Med Chem; 2020 Dec; 35(1):139-144. PubMed ID: 31724435 [TBL] [Abstract][Full Text] [Related]
25. Synthesis and biological evaluation of novel benzo[c]acridine-diones as potential anticancer agents and tubulin polymerization inhibitors. Behbahani FS; Tabeshpour J; Mirzaei S; Golmakaniyoon S; Tayarani-Najaran Z; Ghasemi A; Ghodsi R Arch Pharm (Weinheim); 2019 Jun; 352(6):e1800307. PubMed ID: 31012156 [TBL] [Abstract][Full Text] [Related]
26. Discovery of novel 2-(trifluoromethyl)quinolin-4-amine derivatives as potent antitumor agents with microtubule polymerization inhibitory activity. Liu K; Mo M; Yu G; Yu J; Song SM; Cheng S; Li HM; Meng XL; Zeng XP; Xu GC; Luo H; Xu BX Bioorg Chem; 2023 Oct; 139():106727. PubMed ID: 37451147 [TBL] [Abstract][Full Text] [Related]
27. Discovery and optimization of 3,4,5-trimethoxyphenyl substituted triazolylthioacetamides as potent tubulin polymerization inhibitors. Yang F; He CP; Diao PC; Hong KH; Rao JJ; Zhao PL Bioorg Med Chem Lett; 2019 Jan; 29(1):22-27. PubMed ID: 30448234 [TBL] [Abstract][Full Text] [Related]
28. 2-amino and 2'-aminocombretastatin derivatives as potent antimitotic agents. Chang JY; Yang MF; Chang CY; Chen CM; Kuo CC; Liou JP J Med Chem; 2006 Oct; 49(21):6412-5. PubMed ID: 17034147 [TBL] [Abstract][Full Text] [Related]
30. A facile synthesis of diaryl pyrroles led to the discovery of potent colchicine site antimitotic agents. Romagnoli R; Oliva P; Salvador MK; Manfredini S; Padroni C; Brancale A; Ferla S; Hamel E; Ronca R; Maccarinelli F; Rruga F; Mariotto E; Viola G; Bortolozzi R Eur J Med Chem; 2021 Mar; 214():113229. PubMed ID: 33550186 [TBL] [Abstract][Full Text] [Related]
31. Anti-proliferative potential of triphenyl substituted pyrimidines against MDA-MB-231, HCT-116 and HT-29 cancer cell lines. Ranjan Dwivedi A; Kumar V; Kaur H; Kumar N; Prakash Yadav R; Poduri R; Baranwal S; Kumar V Bioorg Med Chem Lett; 2020 Oct; 30(20):127468. PubMed ID: 32768647 [TBL] [Abstract][Full Text] [Related]
32. Synthesis, biological evaluation and molecular docking investigation of new sulphonamide derivatives bearing naphthalene moiety as potent tubulin polymerisation inhibitors. Wang G; Fan M; Liu W; He M; Li Y; Peng Z J Enzyme Inhib Med Chem; 2021 Dec; 36(1):1402-1410. PubMed ID: 34157927 [TBL] [Abstract][Full Text] [Related]
33. 3-aryl-4-(3,4,5-trimethoxyphenyl)pyridines inhibit tubulin polymerisation and act as anticancer agents. Wang C; Zhang Y; Yang S; Shi L; Xiu Y; Wu Y; Jiang H J Enzyme Inhib Med Chem; 2024 Dec; 39(1):2286939. PubMed ID: 38083880 [TBL] [Abstract][Full Text] [Related]
34. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-[1,2,4]triazolo[1,5-a]pyrimidines. Huo XS; Jian XE; Ou-Yang J; Chen L; Yang F; Lv DX; You WW; Rao JJ; Zhao PL Eur J Med Chem; 2021 Aug; 220():113449. PubMed ID: 33895499 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, anticancer activity and molecular docking studies on a series of heterocyclic trans-cyanocombretastatin analogues as antitubulin agents. Penthala NR; Zong H; Ketkar A; Madadi NR; Janganati V; Eoff RL; Guzman ML; Crooks PA Eur J Med Chem; 2015 Mar; 92():212-20. PubMed ID: 25557492 [TBL] [Abstract][Full Text] [Related]
36. Design, synthesis and evaluation of novel bis-substituted aromatic amide dithiocarbamate derivatives as colchicine site tubulin polymerization inhibitors with potent anticancer activities. Sun YX; Song J; Kong LJ; Sha BB; Tian XY; Liu XJ; Hu T; Chen P; Zhang SY Eur J Med Chem; 2022 Feb; 229():114069. PubMed ID: 34971875 [TBL] [Abstract][Full Text] [Related]
37. Design, synthesis, and biological evaluation of novel benzodiazepine derivatives as anticancer agents through inhibition of tubulin polymerization in vitro and in vivo. Pang Y; Lin H; Ou C; Cao Y; An B; Yan J; Li X Eur J Med Chem; 2019 Nov; 182():111670. PubMed ID: 31499359 [TBL] [Abstract][Full Text] [Related]
38. Novel Combretastatin A-4 Analogs-Design, Synthesis, and Antiproliferative and Anti-Tubulin Activity. Jędrzejczyk M; Morabito B; Żyżyńska-Granica B; Struga M; Janczak J; Aminpour M; Tuszynski JA; Huczyński A Molecules; 2024 May; 29(10):. PubMed ID: 38792062 [TBL] [Abstract][Full Text] [Related]
39. Design, synthesis and biological evaluation of novel 5,6,7-trimethoxy-N-aryl-2-styrylquinolin-4-amines as potential anticancer agents and tubulin polymerization inhibitors. Mirzaei S; Eisvand F; Hadizadeh F; Mosaffa F; Ghasemi A; Ghodsi R Bioorg Chem; 2020 May; 98():103711. PubMed ID: 32179282 [TBL] [Abstract][Full Text] [Related]
40. Design and synthesis of substituted dihydropyrimidinone derivatives as cytotoxic and tubulin polymerization inhibitors. Sana S; Tokala R; Bajaj DM; Nagesh N; Bokara KK; Kiranmai G; Lakshmi UJ; Vadlamani S; Talla V; Shankaraiah N Bioorg Chem; 2019 Dec; 93():103317. PubMed ID: 31586714 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]