These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33731776)

  • 1. Adaptive constrained constructive optimisation for complex vascularisation processes.
    Talou GDM; Safaei S; Hunter PJ; Blanco PJ
    Sci Rep; 2021 Mar; 11(1):6180. PubMed ID: 33731776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast blood-flow simulation for large arterial trees containing thousands of vessels.
    Muller A; Clarke R; Ho H
    Comput Methods Biomech Biomed Engin; 2017 Feb; 20(2):160-170. PubMed ID: 27376402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A computational approach to generate concurrent arterial networks in vascular territories.
    Blanco PJ; de Queiroz RA; Feijóo RA
    Int J Numer Method Biomed Eng; 2013 May; 29(5):601-14. PubMed ID: 23576397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An
    Ho H; Yu HB; Bartlett A; Hunter P
    Comput Methods Biomech Biomed Engin; 2020 Mar; 23(4):138-142. PubMed ID: 31928213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Introduction and advantage analysis of the stepwise method for the construction of vascular trees].
    Zhang Y; Xie H; Zhu K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Aug; 27(4):902-6. PubMed ID: 20842868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional model for arterial tree representation, generated by constrained constructive optimization.
    Karch R; Neumann F; Neumann M; Schreiner W
    Comput Biol Med; 1999 Jan; 29(1):19-38. PubMed ID: 10207653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An anatomically detailed arterial network model for one-dimensional computational hemodynamics.
    Blanco PJ; Watanabe SM; Passos MA; Lemos PA; Feijóo RA
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):736-53. PubMed ID: 25347874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staged growth of optimized arterial model trees.
    Karch R; Neumann F; Neumann M; Schreiner W
    Ann Biomed Eng; 2000 May; 28(5):495-511. PubMed ID: 10925948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the anatomical definition of arterial networks in blood flow simulations: comparison of detailed and simplified models.
    Blanco PJ; Müller LO; Watanabe SM; Feijóo RA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1663-1678. PubMed ID: 32034549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of vascular territory resistances in one-dimensional hemodynamics simulations.
    Blanco PJ; Watanabe SM; Feijóo RA
    J Biomech; 2012 Aug; 45(12):2066-73. PubMed ID: 22771032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms.
    Blanco PJ; Watanabe SM; Dari EA; Passos MA; Feijóo RA
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1303-30. PubMed ID: 24682727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voronoi polyhedra analysis of optimized arterial tree models.
    Karch R; Neumann F; Neumann M; Szawlowski P; Schreiner W
    Ann Biomed Eng; 2003 May; 31(5):548-63. PubMed ID: 12757199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models.
    Kroon W; Huberts W; Bosboom M; van de Vosse F
    Comput Math Methods Med; 2012; 2012():156094. PubMed ID: 22654957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized arterial trees supplying hollow organs.
    Schreiner W; Karch R; Neumann M; Neumann F; Szawlowski P; Roedler S
    Med Eng Phys; 2006 Jun; 28(5):416-29. PubMed ID: 16144769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited bifurcation asymmetry in coronary arterial tree models generated by constrained constructive optimization.
    Schreiner W; Neumann F; Neumann M; Karch R; End A; Roedler SM
    J Gen Physiol; 1997 Feb; 109(2):129-40. PubMed ID: 9041443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast algorithm for 3-D vascular tree modeling.
    Kretowski M; Rolland Y; Bézy-Wendling J; Coatrieux JL
    Comput Methods Programs Biomed; 2003 Feb; 70(2):129-36. PubMed ID: 12507789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation-based uncertainty quantification of human arterial network hemodynamics.
    Chen P; Quarteroni A; Rozza G
    Int J Numer Method Biomed Eng; 2013 Jun; 29(6):698-721. PubMed ID: 23653286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asymmetries arising from the space-filling nature of vascular networks.
    Hunt D; Savage VM
    Phys Rev E; 2016 Jun; 93(6):062305. PubMed ID: 27415278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel generation of extensive vascular networks with application to an archetypal human kidney model.
    Cury LFM; Maso Talou GD; Younes-Ibrahim M; Blanco PJ
    R Soc Open Sci; 2021 Dec; 8(12):210973. PubMed ID: 34966553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.