BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33731801)

  • 1. Pol α-primase dependent nuclear localization of the mammalian CST complex.
    Kelich JM; Papaioannou H; Skordalakes E
    Commun Biol; 2021 Mar; 4(1):349. PubMed ID: 33731801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CST-polymerase α-primase solves a second telomere end-replication problem.
    Takai H; Aria V; Borges P; Yeeles JTP; de Lange T
    Nature; 2024 Mar; 627(8004):664-670. PubMed ID: 38418884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replication proteins influence the maintenance of telomere length and telomerase protein stability.
    Dahlén M; Sunnerhagen P; Wang TS
    Mol Cell Biol; 2003 May; 23(9):3031-42. PubMed ID: 12697806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guardians of the Genome: How the Single-Stranded DNA-Binding Proteins RPA and CST Facilitate Telomere Replication.
    Olson CL; Wuttke DS
    Biomolecules; 2024 Feb; 14(3):. PubMed ID: 38540683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human CST complex restricts excessive PrimPol repriming upon UV induced replication stress by suppressing p21.
    Sang PB; Jaiswal RK; Lyu X; Chai W
    Nucleic Acids Res; 2024 Apr; 52(7):3778-3793. PubMed ID: 38348929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The B-subunit of DNA polymerase alpha-primase associates with the origin recognition complex for initiation of DNA replication.
    Uchiyama M; Wang TS
    Mol Cell Biol; 2004 Sep; 24(17):7419-34. PubMed ID: 15314153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CST-Polymeraseα-primase solves a second telomere end-replication problem.
    Takai H; Aria V; Borges P; Yeeles JTP; de Lange T
    bioRxiv; 2024 Jan; ():. PubMed ID: 37961611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrachromosomal telomere DNA derived from excessive strand displacements.
    Lee J; Lee J; Sohn EJ; Taglialatela A; O'Sullivan RJ; Ciccia A; Min J
    Proc Natl Acad Sci U S A; 2024 May; 121(19):e2318438121. PubMed ID: 38696464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural genomics approach to investigate deleterious impact of nsSNPs in conserved telomere maintenance component 1.
    Choudhury A; Mohammad T; Samarth N; Hussain A; Rehman MT; Islam A; Alajmi MF; Singh S; Hassan MI
    Sci Rep; 2021 May; 11(1):10202. PubMed ID: 33986331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CryoEM insights into RNA primer synthesis by the human primosome.
    Yin Z; Kilkenny ML; Ker DS; Pellegrini L
    FEBS J; 2024 Apr; 291(8):1813-1829. PubMed ID: 38335062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RPA-like single-stranded DNA-binding protein complexes including CST serve as specialized processivity factors for polymerases.
    Barbour AT; Wuttke DS
    Curr Opin Struct Biol; 2023 Aug; 81():102611. PubMed ID: 37245465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular choreography of primer synthesis by the eukaryotic Pol α-primase.
    Yuan Z; Georgescu R; Li H; O'Donnell ME
    Nat Commun; 2023 Jun; 14(1):3697. PubMed ID: 37344454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extrachromosomal Telomeres Derived from Excessive Strand Displacements.
    Lee J; Lee J; Sohn EJ; Taglialatela A; O'Sullivan RJ; Ciccia A; Min J
    bioRxiv; 2023 Oct; ():. PubMed ID: 37577643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deficiency in mammalian STN1 promotes colon cancer development via inhibiting DNA repair.
    Nguyen DD; Kim E; Le NT; Ding X; Jaiswal RK; Kostlan RJ; Nguyen TNT; Shiva O; Le MT; Chai W
    Sci Adv; 2023 May; 9(19):eadd8023. PubMed ID: 37163605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional Depletion of STN1 in Mouse Embryonic Fibroblasts.
    Knowles S; Chai W
    Bio Protoc; 2024 Apr; 14(8):e4977. PubMed ID: 38686350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rif1 regulates telomere length through conserved HEAT repeats.
    Shubin CB; Mayangsari R; Swett AD; Greider CW
    Nucleic Acids Res; 2021 Apr; 49(7):3967-3980. PubMed ID: 33772576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cancer-specific loss of
    Amen AM; Fellmann C; Soczek KM; Ren SM; Lew RJ; Knott GJ; Park JE; McKinney AM; Mancini A; Doudna JA; Costello JF
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33758097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repriming DNA synthesis: an intrinsic restart pathway that maintains efficient genome replication.
    Bainbridge LJ; Teague R; Doherty AJ
    Nucleic Acids Res; 2021 May; 49(9):4831-4847. PubMed ID: 33744934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CST in maintaining genome stability: Beyond telomeres.
    Lyu X; Sang PB; Chai W
    DNA Repair (Amst); 2021 Jun; 102():103104. PubMed ID: 33780718
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.