These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33731833)

  • 1. Antibiotic tolerance is associated with a broad and complex transcriptional response in E. coli.
    Deter HS; Hossain T; Butzin NC
    Sci Rep; 2021 Mar; 11(1):6112. PubMed ID: 33731833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific Enrichment and Proteomics Analysis of Escherichia coli Persisters from Rifampin Pretreatment.
    Sulaiman JE; Hao C; Lam H
    J Proteome Res; 2018 Nov; 17(11):3984-3996. PubMed ID: 30336045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteolytic Queues at ClpXP Increase Antibiotic Tolerance.
    Deter HS; Abualrahi AH; Jadhav P; Schweer EK; Ogle CT; Butzin NC
    ACS Synth Biol; 2020 Jan; 9(1):95-103. PubMed ID: 31860281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of phenotypic inheritance associated with
    Hingley-Wilson SM; Ma N; Hu Y; Casey R; Bramming A; Curry RJ; Tang HL; Wu H; Butler RE; Jacobs WR; Rocco A; McFadden J
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4152-4157. PubMed ID: 32029596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation and compensation in a bacterial gene regulatory network evolving under antibiotic selection.
    Patel V; Matange N
    Elife; 2021 Sep; 10():. PubMed ID: 34591012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between network structures, regulatory modes and sensing mechanisms of transcription factors in the transcriptional regulatory network of E. coli.
    Balaji S; Babu MM; Aravind L
    J Mol Biol; 2007 Sep; 372(4):1108-1122. PubMed ID: 17706247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting transcriptional regulatory interactions with artificial neural networks applied to E. coli multidrug resistance efflux pumps.
    Veiga DF; Vicente FF; Nicolás MF; Vasconcelos AT
    BMC Microbiol; 2008 Jun; 8():101. PubMed ID: 18565227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Escherichia coli transcriptome mostly consists of independently regulated modules.
    Sastry AV; Gao Y; Szubin R; Hefner Y; Xu S; Kim D; Choudhary KS; Yang L; King ZA; Palsson BO
    Nat Commun; 2019 Dec; 10(1):5536. PubMed ID: 31797920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells.
    Goormaghtigh F; Fraikin N; Putrinš M; Hallaert T; Hauryliuk V; Garcia-Pino A; Sjödin A; Kasvandik S; Udekwu K; Tenson T; Kaldalu N; Van Melderen L
    mBio; 2018 Jun; 9(3):. PubMed ID: 29895634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Construction of ompW knock-out mutants of Escherichia coli to increase sensitivity to neomycinsulphate and ampicillin].
    Wu X; Zou H; Tian L; Pan J; Zhao F
    Wei Sheng Wu Xue Bao; 2012 Aug; 52(8):1021-6. PubMed ID: 23173439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of oxidative stress in persister tolerance.
    Wu Y; Vulić M; Keren I; Lewis K
    Antimicrob Agents Chemother; 2012 Sep; 56(9):4922-6. PubMed ID: 22777047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interspecific bacterial sensing through airborne signals modulates locomotion and drug resistance.
    Kim KS; Lee S; Ryu CM
    Nat Commun; 2013; 4():1809. PubMed ID: 23651997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blue light-mediated gene expression as a promising strategy to reduce antibiotic resistance in Escherichia coli.
    Jiang Q; Geng F; Shen J; Zhu P; Lu Z; Lu F; Zhou L
    Biotechnol J; 2024 May; 19(5):e2400023. PubMed ID: 38719589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transfer of an ampicillin resistance gene between two Escherichia coli strains in the bowel microbiota of an infant treated with antibiotics.
    Karami N; Martner A; Enne VI; Swerkersson S; Adlerberth I; Wold AE
    J Antimicrob Chemother; 2007 Nov; 60(5):1142-5. PubMed ID: 17768176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MCR-1 confers cross-resistance to lysozyme.
    Sherman EX; Hufnagel DA; Weiss DS
    Lancet Infect Dis; 2016 Nov; 16(11):1226-1227. PubMed ID: 27788983
    [No Abstract]   [Full Text] [Related]  

  • 16. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli.
    Li Y; Zhang Y
    Antimicrob Agents Chemother; 2007 Jun; 51(6):2092-9. PubMed ID: 17420206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial persistence as a phenotypic switch.
    Balaban NQ; Merrin J; Chait R; Kowalik L; Leibler S
    Science; 2004 Sep; 305(5690):1622-5. PubMed ID: 15308767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subminimal inhibitory concentrations of the disinfectant benzalkonium chloride select for a tolerant subpopulation of Escherichia coli with inheritable characteristics.
    Moen B; Rudi K; Bore E; Langsrud S
    Int J Mol Sci; 2012; 13(4):4101-4123. PubMed ID: 22605968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive SoxS expression in a fluoroquinolone-resistant strain with a truncated SoxR protein and identification of a new member of the marA-soxS-rob regulon, mdtG.
    Fàbrega A; Martin RG; Rosner JL; Tavio MM; Vila J
    Antimicrob Agents Chemother; 2010 Mar; 54(3):1218-25. PubMed ID: 20008776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large mutational target size for rapid emergence of bacterial persistence.
    Girgis HS; Harris K; Tavazoie S
    Proc Natl Acad Sci U S A; 2012 Jul; 109(31):12740-5. PubMed ID: 22802628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.