These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33731920)

  • 1. How the O
    Chen GE; Adams NBP; Jackson PJ; Dickman MJ; Hunter CN
    Nat Plants; 2021 Mar; 7(3):365-375. PubMed ID: 33731920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis.
    Chen GE; Canniffe DP; Hunter CN
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6280-6285. PubMed ID: 28559347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic Mg-protoporphyrin monomethyl ester cyclases in purple bacteria: a strategy adopted to bypass the repressive oxygen control system.
    Ouchane S; Steunou AS; Picaud M; Astier C
    J Biol Chem; 2004 Feb; 279(8):6385-94. PubMed ID: 14617630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved residues in Ycf54 are required for protochlorophyllide formation in
    Hollingshead S; Bliss S; Baker PJ; Neil Hunter C
    Biochem J; 2017 Feb; 474(5):667-681. PubMed ID: 28008132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protochlorophyllide synthesis by recombinant cyclases from eukaryotic oxygenic phototrophs and the dependence on Ycf54.
    Chen GE; Hunter CN
    Biochem J; 2020 Jun; 477(12):2313-2325. PubMed ID: 32469391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls.
    Wiesselmann M; Hebecker S; Borrero-de Acuña JM; Nimtz M; Bollivar D; Jänsch L; Moser J; Jahn D
    Biochem J; 2020 Dec; 477(23):4635-4654. PubMed ID: 33211085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rubrivivax gelatinosus acsF (previously orf358) codes for a conserved, putative binuclear-iron-cluster-containing protein involved in aerobic oxidative cyclization of Mg-protoporphyrin IX monomethylester.
    Pinta V; Picaud M; Reiss-Husson F; Astier C
    J Bacteriol; 2002 Feb; 184(3):746-53. PubMed ID: 11790744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xantha-l encodes a membrane subunit of the aerobic Mg-protoporphyrin IX monomethyl ester cyclase involved in chlorophyll biosynthesis.
    Rzeznicka K; Walker CJ; Westergren T; Kannangara CG; von Wettstein D; Merchant S; Gough SP; Hansson M
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5886-91. PubMed ID: 15824317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of chlorophylls from protoporphyrin IX.
    Willows RD
    Nat Prod Rep; 2003 Jun; 20(3):327-41. PubMed ID: 12828371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Barley Mg-protoporphyrin IX Monomethyl Ester Cyclase is Powered by Electrons from Ferredoxin.
    Stuart D; Sandström M; Youssef HM; Zakhrabekova S; Jensen PE; Bollivar DW; Hansson M
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32911631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Linking chlorophyll biosynthesis to a dynamic plastoquinone pool.
    Steccanella V; Hansson M; Jensen PE
    Plant Physiol Biochem; 2015 Dec; 97():207-16. PubMed ID: 26480470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The catalytic subunit of magnesium-protoporphyrin IX monomethyl ester cyclase forms a chloroplast complex to regulate chlorophyll biosynthesis in rice.
    Kong W; Yu X; Chen H; Liu L; Xiao Y; Wang Y; Wang C; Lin Y; Yu Y; Wang C; Jiang L; Zhai H; Zhao Z; Wan J
    Plant Mol Biol; 2016 Sep; 92(1-2):177-91. PubMed ID: 27514852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring.
    Nasrulhaq-Boyce A; Griffiths WT; Jones OT
    Biochem J; 1987 Apr; 243(1):23-9. PubMed ID: 3606572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the isocyclic ring of chlorophyll by isolated Chlamydomonas reinhardtii chloroplasts.
    Bollivar DW; Beale SI
    Photosynth Res; 1995 Feb; 43(2):113-24. PubMed ID: 24306744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the chlE gene encoding oxygen-independent Mg-protoporphyrin IX monomethyl ester cyclase in cyanobacteria.
    Yamanashi K; Minamizaki K; Fujita Y
    Biochem Biophys Res Commun; 2015 Aug; 463(4):1328-33. PubMed ID: 26102037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria.
    Chen GE; Hitchcock A; Mareš J; Gong Y; Tichý M; Pilný J; Kovářová L; Zdvihalová B; Xu J; Hunter CN; Sobotka R
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method for isolating physiologically active Mg-protoporphyrin monomethyl ester, the substrate of the cyclase enzyme of the chlorophyll biosynthetic pathway.
    Gough SP; Rzeznicka K; Peterson Wulff R; Francisco Jda C; Hansson A; Jensen PE; Hansson M
    Plant Physiol Biochem; 2007 Dec; 45(12):932-6. PubMed ID: 17949988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthetic studies on chlorophylls: from protoporphyrin IX to protochlorophyllide.
    Castelfranco PA; Walker CJ; Weinstein JD
    Ciba Found Symp; 1994; 180():194-204; discussion 205-9. PubMed ID: 7842853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of Magnesium Protoporphyrin Monomethyl Ester in Chlamydomonas reinhardtii.
    Crawford MS; Wang WY
    Plant Physiol; 1983 Feb; 71(2):303-6. PubMed ID: 16662822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient kinetics of the reaction catalysed by magnesium protoporphyrin IX methyltransferase.
    Shepherd M; Hunter CN
    Biochem J; 2004 Sep; 382(Pt 3):1009-13. PubMed ID: 15239672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.