These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 3373206)
1. Generation of motor patterns for walking and flight in motoneurons supplying bifunctional muscles in the locust. Ramirez JM; Pearson KG J Neurobiol; 1988 Apr; 19(3):257-82. PubMed ID: 3373206 [TBL] [Abstract][Full Text] [Related]
2. Interneurons in the flight system of the locust: distribution, connections, and resetting properties. Robertson RM; Pearson KG J Comp Neurol; 1983 Mar; 215(1):33-50. PubMed ID: 6853764 [TBL] [Abstract][Full Text] [Related]
3. Reorganization of sensory regulation of locust flight after partial deafferentation. Büschges A; Ramirez JM; Pearson KG J Neurobiol; 1992 Feb; 23(1):31-43. PubMed ID: 1564454 [TBL] [Abstract][Full Text] [Related]
4. Motoneurons of the flight power muscles of the blowfly Calliphora erythrocephala: structures and mutual dye coupling. Schlurmann M; Hausen K J Comp Neurol; 2007 Jan; 500(3):448-64. PubMed ID: 17120285 [TBL] [Abstract][Full Text] [Related]
5. Intracellular recordings from interneurons and motoneurons in intact flying locusts. Wolf H; Pearson KG J Neurosci Methods; 1987 Oct; 21(2-4):345-54. PubMed ID: 3682883 [TBL] [Abstract][Full Text] [Related]
6. Intracellular recordings from nonspiking interneurons in a semiintact, tethered walking insect. Schmitz J; Büschges A; Kittmann R J Neurobiol; 1991 Dec; 22(9):907-21. PubMed ID: 1724457 [TBL] [Abstract][Full Text] [Related]
7. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. Büschges A; Ramirez JM; Driesang R; Pearson KG J Neurobiol; 1992 Feb; 23(1):44-60. PubMed ID: 1373440 [TBL] [Abstract][Full Text] [Related]
8. Synaptic drive contributing to rhythmic activation of motoneurons in the deafferented stick insect walking system. Büschges A; Ludwar BCh; Bucher D; Schmidt J; DiCaprio RA Eur J Neurosci; 2004 Apr; 19(7):1856-62. PubMed ID: 15078559 [TBL] [Abstract][Full Text] [Related]
9. The motor neurons innervating the direct flight muscles of Drosophila melanogaster are morphologically specialized. Trimarchi JR; Schneiderman AM J Comp Neurol; 1994 Feb; 340(3):427-43. PubMed ID: 8188860 [TBL] [Abstract][Full Text] [Related]
10. Motor neurons supplying hindwing muscles of a grasshopper: topography and distribution into anatomical groups. Siegler MV; Phong MP; Pousman CA J Comp Neurol; 1991 Sep; 311(3):342-55. PubMed ID: 1955587 [TBL] [Abstract][Full Text] [Related]
11. Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. Reichert H; Rowell CH J Neurophysiol; 1985 May; 53(5):1201-18. PubMed ID: 2987432 [TBL] [Abstract][Full Text] [Related]
12. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae. Johnston RM; Levine RB Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968 [TBL] [Abstract][Full Text] [Related]
13. Modulation of membrane potential in mesothoracic moto- and interneurons during stick insect front-leg walking. Ludwar BCh; Westmark S; Büschges A; Schmidt J J Neurophysiol; 2005 Oct; 94(4):2772-84. PubMed ID: 16000520 [TBL] [Abstract][Full Text] [Related]
14. Role of local nonspiking interneurons in the generation of rhythmic motor activity in the stick insect. Büschges A J Neurobiol; 1995 Aug; 27(4):488-512. PubMed ID: 7561829 [TBL] [Abstract][Full Text] [Related]
15. Alteration of bursting properties in interneurons during locust flight. Ramirez JM; Pearson KG J Neurophysiol; 1993 Nov; 70(5):2148-60. PubMed ID: 8294976 [TBL] [Abstract][Full Text] [Related]
16. Flight-initiating interneurons in the locust. Pearson KG; Reye DN; Parsons DW; Bicker G J Neurophysiol; 1985 Apr; 53(4):910-25. PubMed ID: 3998797 [TBL] [Abstract][Full Text] [Related]
17. The structure and function of serially homologous leg motor neurons in the locust. II. Physiology. Wilson JA J Neurobiol; 1979 Mar; 10(2):153-67. PubMed ID: 512655 [TBL] [Abstract][Full Text] [Related]
18. Neural correlates of flight loss in a Mexican grasshopper, Barytettix psolus. I. Motor and sensory cells. Arbas EA J Comp Neurol; 1983 Jun; 216(4):369-80. PubMed ID: 6308070 [TBL] [Abstract][Full Text] [Related]
19. Projections of the wing stretch receptors to central flight neurons in the locust. Reye DN; Pearson KG J Neurosci; 1987 Aug; 7(8):2476-87. PubMed ID: 3612248 [TBL] [Abstract][Full Text] [Related]
20. Heat shock protects synaptic transmission in flight motor circuitry of locusts. Dawson-Scully K; Meldrum Robertson R Neuroreport; 1998 Aug; 9(11):2589-93. PubMed ID: 9721938 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]