These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33732488)

  • 1. A comparative study of autogenous, allograft and artificial bone substitutes on bone regeneration and immunotoxicity in rat femur defect model.
    Zou W; Li X; Li N; Guo T; Cai Y; Yang X; Liang J; Sun Y; Fan Y
    Regen Biomater; 2021 Feb; 8(1):rbaa040. PubMed ID: 33732488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of New Biphasic Calcium Phosphate Bone Substitute: Rabbit Femur Defect Model and Preliminary Clinical Results.
    Chen YJ; Pao JL; Chen CS; Chen YC; Chang CC; Hung FM; Chang CH
    J Med Biol Eng; 2017; 37(1):85-93. PubMed ID: 28286465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel osteoconductive β-tricalcium phosphate/poly(L-lactide-co-e-caprolactone) scaffold for bone regeneration: a study in a rabbit calvarial defect.
    Pihlman H; Keränen P; Paakinaho K; Linden J; Hannula M; Manninen IK; Hyttinen J; Manninen M; Laitinen-Vapaavuori O
    J Mater Sci Mater Med; 2018 Oct; 29(10):156. PubMed ID: 30298429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative performance of three ceramic bone graft substitutes.
    Hing KA; Wilson LF; Buckland T
    Spine J; 2007; 7(4):475-90. PubMed ID: 17630146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects.
    Pripatnanont P; Praserttham P; Suttapreyasri S; Leepong N; Monmaturapoj N
    Int J Oral Maxillofac Implants; 2016; 31(2):294-303. PubMed ID: 27004276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A novel therapeutic approach to bone replacement: vitalisation of industrial processed allogenic bone graft with autologous bone marrow].
    Schmid U; Thielemann F; Weise K; Ochs BG
    Z Orthop Unfall; 2007; 145(2):221-9. PubMed ID: 17492564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model.
    Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Treatment of traumatic bone defect with graft material of allogenic cancellous combined with autologous red marrow].
    Kong Z; Tian D; Yu H; Feng W; Liu C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Oct; 22(10):1251-4. PubMed ID: 18979889
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histomorphometric evaluation of bone regeneration using autogenous bone and beta-tricalcium phosphate in diabetic rabbits.
    Živadinović M; Andrić M; Milošević V; Manojlović-Stojanoski M; Prokić B; Prokić B; Dimić A; Ćalasan D; Brković B
    Vojnosanit Pregl; 2016 Dec; 73(12):1132-8. PubMed ID: 29341570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of biphasic calcium phosphate with beta-tricalcium phosphate in rat cranial defects--A molecular-biological and histological study.
    Kunert-Keil C; Scholz F; Gedrange T; Gredes T
    Ann Anat; 2015 May; 199():79-84. PubMed ID: 24439994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model.
    Higuera CA; Inoue N; Lim JS; Zhang R; Dimaano N; Frassica FJ; Chao EY
    J Orthop Res; 2005 Sep; 23(5):1091-9. PubMed ID: 16140192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic effect of tricalcium phosphate substituted by magnesium associated with Genderm® membrane in rat calvarial defect model.
    Costa NM; Yassuda DH; Sader MS; Fernandes GV; Soares GD; Granjeiro JM
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():63-71. PubMed ID: 26838825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone grafts and their substitutes.
    Fillingham Y; Jacobs J
    Bone Joint J; 2016 Jan; 98-B(1 Suppl A):6-9. PubMed ID: 26733632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP).
    de Freitas Silva L; de Carvalho Reis ENR; Barbara TA; Bonardi JP; Garcia IR; de Carvalho PSP; Ponzoni D
    Acta Histochem; 2017 Jul; 119(6):624-631. PubMed ID: 28732677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation.
    Szabó G; Huys L; Coulthard P; Maiorana C; Garagiola U; Barabás J; Németh Z; Hrabák K; Suba Z
    Int J Oral Maxillofac Implants; 2005; 20(3):371-81. PubMed ID: 15973948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone formation in a rat calvarial defect model after transplanting autogenous bone marrow with beta-tricalcium phosphate.
    Shirasu N; Ueno T; Hirata Y; Hirata A; Kagawa T; Kanou M; Sawaki M; Wakimoto M; Ota A; Imura H; Matsumura T; Yamada T; Yamachika E; Sano K
    Acta Histochem; 2010 May; 112(3):270-7. PubMed ID: 19403161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autogenous, allogenic, and beta-TCP grafts: comparative effectiveness in experimental bone furcation defects in dogs.
    Wada T; Wu CH; Sugita H; Sugita N; Katagiri S; Shimizu M; Hara K
    J Oral Implantol; 1989; 15(4):231-6. PubMed ID: 2519925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment of circumferential defects with osseoconductive xenografts of different porosities: a histological, histometric, resonance frequency analysis, and micro-CT study in dogs.
    Antunes AA; Grossi-Oliveira GA; Martins-Neto EC; Almeida AL; Salata LA
    Clin Implant Dent Relat Res; 2015 Jan; 17 Suppl 1():e202-20. PubMed ID: 24283568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination with allogenic bone reduces early absorption of beta-tricalcium phosphate (beta-TCP) and enhances the role as a bone regeneration scaffold. Experimental animal study in rat mandibular bone defects.
    Hirota M; Matsui Y; Mizuki N; Kishi T; Watanuki K; Ozawa T; Fukui T; Shoji S; Adachi M; Monden Y; Iwai T; Tohnai I
    Dent Mater J; 2009 Mar; 28(2):153-61. PubMed ID: 19496394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.