These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 33732693)

  • 1. pCysMod: Prediction of Multiple Cysteine Modifications Based on Deep Learning Framework.
    Li S; Yu K; Wu G; Zhang Q; Wang P; Zheng J; Liu ZX; Wang J; Gao X; Cheng H
    Front Cell Dev Biol; 2021; 9():617366. PubMed ID: 33732693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iCysMod: an integrative database for protein cysteine modifications in eukaryotes.
    Wang P; Zhang Q; Li S; Cheng B; Xue H; Wei Z; Shao T; Liu ZX; Cheng H; Wang Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33406221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning based prediction of species-specific protein S-glutathionylation sites.
    Li S; Yu K; Wang D; Zhang Q; Liu ZX; Zhao L; Cheng H
    Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140422. PubMed ID: 32234550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepNitro: Prediction of Protein Nitration and Nitrosylation Sites by Deep Learning.
    Xie Y; Luo X; Li Y; Chen L; Ma W; Huang J; Cui J; Zhao Y; Xue Y; Zuo Z; Ren J
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):294-306. PubMed ID: 30268931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepSSPred: A Deep Learning Based Sulfenylation Site Predictor Via a Novel nSegmented Optimize Federated Feature Encoder.
    Khan ZU; Pi D
    Protein Pept Lett; 2021; 28(6):708-721. PubMed ID: 33267753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning based prediction of reversible HAT/HDAC-specific lysine acetylation.
    Yu K; Zhang Q; Liu Z; Du Y; Gao X; Zhao Q; Cheng H; Li X; Liu ZX
    Brief Bioinform; 2020 Sep; 21(5):1798-1805. PubMed ID: 32978618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using deep neural networks and biological subwords to detect protein S-sulfenylation sites.
    Do DT; Le TQT; Le NQK
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32613242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GPS-Palm: a deep learning-based graphic presentation system for the prediction of S-palmitoylation sites in proteins.
    Ning W; Jiang P; Guo Y; Wang C; Tan X; Zhang W; Peng D; Xue Y
    Brief Bioinform; 2021 Mar; 22(2):1836-1847. PubMed ID: 32248222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SOHSite: incorporating evolutionary information and physicochemical properties to identify protein S-sulfenylation sites.
    Bui VM; Weng SL; Lu CT; Chang TH; Weng JT; Lee TY
    BMC Genomics; 2016 Jan; 17 Suppl 1(Suppl 1):9. PubMed ID: 26819243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comprehensive Review of In silico Analysis for Protein S-sulfenylation Sites.
    Hasan MM; Khatun MS; Kurata H
    Protein Pept Lett; 2018; 25(9):815-821. PubMed ID: 30182830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SOHPRED: a new bioinformatics tool for the characterization and prediction of human S-sulfenylation sites.
    Wang X; Yan R; Li J; Song J
    Mol Biosyst; 2016 Aug; 12(9):2849-58. PubMed ID: 27364688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of S-nitrosylation sites by integrating support vector machines and random forest.
    Hasan MM; Manavalan B; Khatun MS; Kurata H
    Mol Omics; 2019 Dec; 15(6):451-458. PubMed ID: 31710075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PPSNO: A Feature-Rich SNO Sites Predictor by Stacking Ensemble Strategy from Protein Sequence-Derived Information.
    Zhu L; Wang L; Yang Z; Xu P; Yang S
    Interdiscip Sci; 2024 Mar; 16(1):192-217. PubMed ID: 38206557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches.
    Li BQ; Hu LL; Niu S; Cai YD; Chou KC
    J Proteomics; 2012 Feb; 75(5):1654-65. PubMed ID: 22178444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational identification of protein S-sulfenylation sites by incorporating the multiple sequence features information.
    Hasan MM; Guo D; Kurata H
    Mol Biosyst; 2017 Nov; 13(12):2545-2550. PubMed ID: 28990628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GPS-SNO: computational prediction of protein S-nitrosylation sites with a modified GPS algorithm.
    Xue Y; Liu Z; Gao X; Jin C; Wen L; Yao X; Ren J
    PLoS One; 2010 Jun; 5(6):e11290. PubMed ID: 20585580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites.
    Xie Y; Zheng Y; Li H; Luo X; He Z; Cao S; Shi Y; Zhao Q; Xue Y; Zuo Z; Ren J
    Sci Rep; 2016 Jun; 6():28249. PubMed ID: 27306108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.