These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 3373278)
1. Differential conduction at axonal bifurcations. II. Theoretical basis. Stockbridge N J Neurophysiol; 1988 Apr; 59(4):1286-95. PubMed ID: 3373278 [TBL] [Abstract][Full Text] [Related]
2. A mathematical model for conduction of action potentials along bifurcating axons. Parnas I; Segev I J Physiol; 1979 Oct; 295():323-43. PubMed ID: 521942 [TBL] [Abstract][Full Text] [Related]
4. Simulation study on effects of channel noise on differential conduction at an axon branch. Horikawa Y Biophys J; 1993 Aug; 65(2):680-6. PubMed ID: 7693002 [TBL] [Abstract][Full Text] [Related]
5. Differential conduction at axonal bifurcations. I. Effect of electrotonic length. Stockbridge N; Stockbridge LL J Neurophysiol; 1988 Apr; 59(4):1277-85. PubMed ID: 3373277 [TBL] [Abstract][Full Text] [Related]
6. Generalized cable equation model for myelinated nerve fiber. Einziger PD; Livshitz LM; Mizrahi J IEEE Trans Biomed Eng; 2005 Oct; 52(10):1632-42. PubMed ID: 16235649 [TBL] [Abstract][Full Text] [Related]
7. The interaction between membrane kinetics and membrane geometry in the transmission of action potentials in non-uniform excitable fibres: a finite element approach. Altenberger R; Lindsay KA; Ogden JM; Rosenberg JR J Neurosci Methods; 2001 Dec; 112(2):101-17. PubMed ID: 11716946 [TBL] [Abstract][Full Text] [Related]
8. Theoretical response to trains of action potentials of a bifurcating axon with one short daughter branch. Stockbridge N Biophys J; 1988 Oct; 54(4):637-41. PubMed ID: 3224149 [TBL] [Abstract][Full Text] [Related]
9. Modelling in vivo action potential propagation along a giant axon. George S; Foster JM; Richardson G J Math Biol; 2015 Jan; 70(1-2):237-63. PubMed ID: 24553620 [TBL] [Abstract][Full Text] [Related]
10. Cable energy function of cortical axons. Ju H; Hines ML; Yu Y Sci Rep; 2016 Jul; 6():29686. PubMed ID: 27439954 [TBL] [Abstract][Full Text] [Related]
11. Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. Aihara K; Matsumoto G; Ikegaya Y J Theor Biol; 1984 Jul; 109(2):249-69. PubMed ID: 6482467 [TBL] [Abstract][Full Text] [Related]
12. Subthreshold oscillatory responses of the Hodgkin-Huxley cable model for the squid giant axon. Sabah NH; Leibovic KN Biophys J; 1969 Oct; 9(10):1206-22. PubMed ID: 5824410 [TBL] [Abstract][Full Text] [Related]
13. Simulation of nerve block by high-frequency sinusoidal electrical current based on the Hodgkin-Huxley model. Tai C; de Groat WC; Roppolo JR IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):415-22. PubMed ID: 16200764 [TBL] [Abstract][Full Text] [Related]
14. Anatomical basis for an apparent paradox concerning conduction velocities of two identified axons in Aplysia. Pinsker H; Feinstein R; Sawada M; Coggeshall R J Neurobiol; 1976 May; 7(3):241-53. PubMed ID: 1271055 [TBL] [Abstract][Full Text] [Related]
15. Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation. Chen H; Garcia-Gonzalez D; Jérusalem A Phys Rev E; 2019 Mar; 99(3-1):032406. PubMed ID: 30999419 [TBL] [Abstract][Full Text] [Related]
16. Propagation speed in myelinated nerve. II. Theoretical dependence on external Na and on temperature. Hardy WL Biophys J; 1973 Oct; 13(10):1071-89. PubMed ID: 4542941 [TBL] [Abstract][Full Text] [Related]
17. Temperature effects on the properties of the Hodgkin-Huxley propagated action potential model determined by computed solutions and phase-plane analysis. Portela A; Vasallo G; Campi M; Guardado MI; Stewart PA; Gimeno AL; Jenerick H; Rozzell TC Acta Physiol Lat Am; 1978; 28(6):271-307. PubMed ID: 263161 [TBL] [Abstract][Full Text] [Related]
18. Ionic mechanisms underlying history-dependence of conduction delay in an unmyelinated axon. Zhang Y; Bucher D; Nadim F Elife; 2017 Jul; 6():. PubMed ID: 28691900 [TBL] [Abstract][Full Text] [Related]
19. A computational approach for the inverse problem of neuronal conductances determination. Mandujano Valle JA; Madureira AL; Leitão A J Comput Neurosci; 2020 Aug; 48(3):281-297. PubMed ID: 32627092 [TBL] [Abstract][Full Text] [Related]
20. Digital computer solutions for excitation and propagation of the nerve impulse. Cooley JW; Dodge FA Biophys J; 1966 Sep; 6(5):583-99. PubMed ID: 5970564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]