These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33732807)

  • 41. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues.
    Shen JF; Sugawara A; Yamashita J; Ogura H; Sato S
    Int J Oral Sci; 2011 Jul; 3(3):117-24. PubMed ID: 21789960
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Molecular clone of adipose-derived stromal cells with high potential of adipogenic differentiation].
    Wang YY; Gao JH; Jiang P; Lu F; Liao YJ
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2008 Sep; 24(5):381-4. PubMed ID: 19119643
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.
    Stanko P; Kaiserova K; Altanerova V; Altaner C
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Sep; 158(3):373-7. PubMed ID: 24145770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering.
    Kishimoto N; Honda Y; Momota Y; Tran SD
    Oral Dis; 2018 Oct; 24(7):1161-1167. PubMed ID: 29356251
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wnt/β-catenin signaling is critical for dedifferentiation of aged epidermal cells in vivo and in vitro.
    Zhang C; Chen P; Fei Y; Liu B; Ma K; Fu X; Zhao Z; Sun T; Sheng Z
    Aging Cell; 2012 Feb; 11(1):14-23. PubMed ID: 21967252
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method.
    Takabatake K; Matsubara M; Yamachika E; Fujita Y; Arimura Y; Nakatsuji K; Nakano K; Nagatsuka H; Iida S
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830277
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nuclear hormone receptor LXRα inhibits adipocyte differentiation of mesenchymal stem cells with Wnt/beta-catenin signaling.
    Matsushita K; Morello F; Zhang Z; Masuda T; Iwanaga S; Steffensen KR; Gustafsson JÅ; Pratt RE; Dzau VJ
    Lab Invest; 2016 Feb; 96(2):230-8. PubMed ID: 26595172
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Improved osteogenesis and upregulated immunogenicity in human placenta-derived mesenchymal stem cells primed with osteogenic induction medium.
    Fu X; Yang H; Zhang H; Wang G; Liu K; Gu Q; Tao Y; Chen G; Jiang X; Li G; Gu Y; Shi Q
    Stem Cell Res Ther; 2016 Sep; 7(1):138. PubMed ID: 27649692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts.
    Ma J; Xia M D J; Gao J; Lu F; Liao Y
    Plast Reconstr Surg; 2019 Dec; 144(6):1323-1333. PubMed ID: 31764645
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Low-Intensity Pulsed Ultrasound Promotes BMP9 Induced Osteoblastic Differentiation in Rat Dedifferentiated Fat Cells.
    Setoguchi F; Sena K; Noguchi K
    Int J Stem Cells; 2023 Nov; 16(4):406-414. PubMed ID: 37385636
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion.
    Mauney JR; Volloch V; Kaplan DL
    Biomaterials; 2005 Nov; 26(31):6167-75. PubMed ID: 15913765
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue.
    Nobusue H; Endo T; Kano K
    Cell Tissue Res; 2008 Jun; 332(3):435-46. PubMed ID: 18386066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Isolation and adipogenic differentiation of murine mesenchymal stem cells harvested from macrophage-depleted bone marrow and adipose tissue.
    Siddiqui IFS; Muthu ML; Reinhardt DP
    Adipocyte; 2024 Dec; 13(1):2350751. PubMed ID: 38860452
    [TBL] [Abstract][Full Text] [Related]  

  • 54. β-catenin directly sequesters adipocytic and insulin sensitizing activities but not osteoblastic activity of PPARγ2 in marrow mesenchymal stem cells.
    Rahman S; Czernik PJ; Lu Y; Lecka-Czernik B
    PLoS One; 2012; 7(12):e51746. PubMed ID: 23272157
    [TBL] [Abstract][Full Text] [Related]  

  • 55. TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes.
    Yu L; Xie M; Zhang F; Wan C; Yao X
    Stem Cell Res Ther; 2021 Nov; 12(1):573. PubMed ID: 34774100
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of dedifferentiated fat cells for periodontal tissue regeneration.
    Sugawara A; Sato S
    Hum Cell; 2014 Jan; 27(1):12-21. PubMed ID: 24068600
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes.
    Rashnonejad A; Ercan G; Gunduz C; Akdemir A; Tiftikcioglu YO
    Mol Biol Rep; 2018 Jun; 45(3):233-244. PubMed ID: 29453764
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive characterisation of large-scale expanded human bone marrow and umbilical cord mesenchymal stem cells.
    Mennan C; Garcia J; Roberts S; Hulme C; Wright K
    Stem Cell Res Ther; 2019 Mar; 10(1):99. PubMed ID: 30885254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.
    Huber B; Czaja AM; Kluger PJ
    Cell Biol Int; 2016 May; 40(5):569-78. PubMed ID: 26888598
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mesenchymal Stem Cell-Secreted Extracellular Vesicles Instruct Stepwise Dedifferentiation of Breast Cancer Cells into Dormancy at the Bone Marrow Perivascular Region.
    Sandiford OA; Donnelly RJ; El-Far MH; Burgmeyer LM; Sinha G; Pamarthi SH; Sherman LS; Ferrer AI; DeVore DE; Patel SA; Naaldijk Y; Alonso S; Barak P; Bryan M; Ponzio NM; Narayanan R; Etchegaray JP; Kumar R; Rameshwar P
    Cancer Res; 2021 Mar; 81(6):1567-1582. PubMed ID: 33500249
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.