These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 33733221)
1. Tuberculosis Diagnostics and Localization in Chest X-Rays via Deep Learning Models. Guo R; Passi K; Jain CK Front Artif Intell; 2020; 3():583427. PubMed ID: 33733221 [TBL] [Abstract][Full Text] [Related]
2. Uncertainty Assisted Robust Tuberculosis Identification With Bayesian Convolutional Neural Networks. Ul Abideen Z; Ghafoor M; Munir K; Saqib M; Ullah A; Zia T; Tariq SA; Ahmed G; Zahra A IEEE Access; 2020; 8():22812-22825. PubMed ID: 32391238 [TBL] [Abstract][Full Text] [Related]
3. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Rajaraman S; Zamzmi G; Folio LR; Antani S Front Genet; 2022; 13():864724. PubMed ID: 35281798 [TBL] [Abstract][Full Text] [Related]
4. Improved Semantic Segmentation of Tuberculosis-Consistent Findings in Chest X-rays Using Augmented Training of Modality-Specific U-Net Models with Weak Localizations. Rajaraman S; Folio LR; Dimperio J; Alderson PO; Antani SK Diagnostics (Basel); 2021 Mar; 11(4):. PubMed ID: 33808240 [TBL] [Abstract][Full Text] [Related]
5. Proposing a novel multi-instance learning model for tuberculosis recognition from chest X-ray images based on CNNs, complex networks and stacked ensemble. Khatibi T; Shahsavari A; Farahani A Phys Eng Sci Med; 2021 Mar; 44(1):291-311. PubMed ID: 33616887 [TBL] [Abstract][Full Text] [Related]
6. Chest X-ray Bone Suppression for Improving Classification of Tuberculosis-Consistent Findings. Rajaraman S; Zamzmi G; Folio L; Alderson P; Antani S Diagnostics (Basel); 2021 May; 11(5):. PubMed ID: 34067034 [TBL] [Abstract][Full Text] [Related]
7. Ensemble Technique Coupled with Deep Transfer Learning Framework for Automatic Detection of Tuberculosis from Chest X-ray Radiographs. Kotei E; Thirunavukarasu R Healthcare (Basel); 2022 Nov; 10(11):. PubMed ID: 36421659 [TBL] [Abstract][Full Text] [Related]
8. Annotations of Lung Abnormalities in Shenzhen Chest X-ray Dataset for Computer-Aided Screening of Pulmonary Diseases. Yang F; Lu PX; Deng M; Wáng YXJ; Rajaraman S; Xue Z; Folio LR; Antani SK; Jaeger S Data (Basel); 2022 Jul; 7(7):. PubMed ID: 36381384 [TBL] [Abstract][Full Text] [Related]
9. BarlowTwins-CXR: enhancing chest X-ray abnormality localization in heterogeneous data with cross-domain self-supervised learning. Sheng H; Ma L; Samson JF; Liu D BMC Med Inform Decis Mak; 2024 May; 24(1):126. PubMed ID: 38755563 [TBL] [Abstract][Full Text] [Related]
10. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Nafisah SI; Muhammad G Neural Comput Appl; 2022 Apr; ():1-21. PubMed ID: 35462630 [TBL] [Abstract][Full Text] [Related]
11. A review on lung boundary detection in chest X-rays. Candemir S; Antani S Int J Comput Assist Radiol Surg; 2019 Apr; 14(4):563-576. PubMed ID: 30730032 [TBL] [Abstract][Full Text] [Related]
12. A novel stacked generalization of models for improved TB detection in chest radiographs. Rajaraman S; Candemir S; Xue Z; Alderson PO; Kohli M; Abuya J; Thoma GR; Antani S Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():718-721. PubMed ID: 30440497 [TBL] [Abstract][Full Text] [Related]
13. Weak Localization of Radiographic Manifestations in Pulmonary Tuberculosis from Chest X-ray: A Systematic Review. Feyisa DW; Ayano YM; Debelee TG; Schwenker F Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571564 [TBL] [Abstract][Full Text] [Related]
14. Refining dataset curation methods for deep learning-based automated tuberculosis screening. Kim TK; Yi PH; Hager GD; Lin CT J Thorac Dis; 2020 Sep; 12(9):5078-5085. PubMed ID: 33145084 [TBL] [Abstract][Full Text] [Related]
15. A deep learning-based algorithm for pulmonary tuberculosis detection in chest radiography. Chen CF; Hsu CH; Jiang YC; Lin WR; Hong WC; Chen IY; Lin MH; Chu KA; Lee CH; Lee DL; Chen PF Sci Rep; 2024 Jun; 14(1):14917. PubMed ID: 38942819 [TBL] [Abstract][Full Text] [Related]
16. Performance of Qure.ai automatic classifiers against a large annotated database of patients with diverse forms of tuberculosis. Engle E; Gabrielian A; Long A; Hurt DE; Rosenthal A PLoS One; 2020; 15(1):e0224445. PubMed ID: 31978149 [TBL] [Abstract][Full Text] [Related]
17. Multi-View Ensemble Convolutional Neural Network to Improve Classification of Pneumonia in Low Contrast Chest X-Ray Images. Ferreira JR; Armando Cardona Cardenas D; Moreno RA; de Fatima de Sa Rebelo M; Krieger JE; Antonio Gutierrez M Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():1238-1241. PubMed ID: 33018211 [TBL] [Abstract][Full Text] [Related]
18. Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Mahbub MK; Biswas M; Gaur L; Alenezi F; Santosh KC Inf Sci (N Y); 2022 May; 592():389-401. PubMed ID: 36532848 [TBL] [Abstract][Full Text] [Related]
19. Comprehensive Computer-Aided Decision Support Framework to Diagnose Tuberculosis From Chest X-Ray Images: Data Mining Study. Owais M; Arsalan M; Mahmood T; Kim YH; Park KR JMIR Med Inform; 2020 Dec; 8(12):e21790. PubMed ID: 33284119 [TBL] [Abstract][Full Text] [Related]
20. Comparing the Output of an Artificial Intelligence Algorithm in Detecting Radiological Signs of Pulmonary Tuberculosis in Digital Chest X-Rays and Their Smartphone-Captured Photos of X-Ray Films: Retrospective Study. Ridhi S; Robert D; Soren P; Kumar M; Pawar S; Reddy B JMIR Form Res; 2024 Aug; 8():e55641. PubMed ID: 39167435 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]