These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 33733355)

  • 1. Protocol for Construction of Genome-Wide Epistatic SNP Networks Using WISH-R Package.
    Kadarmideen HN; Carmelo VAO
    Methods Mol Biol; 2021; 2212():155-168. PubMed ID: 33733355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Weighted Interaction SNP Hub (WISH) network method for building genetic networks for complex diseases and traits using whole genome genotype data.
    Kogelman LJ; Kadarmideen HN
    BMC Syst Biol; 2014; 8 Suppl 2(Suppl 2):S5. PubMed ID: 25032480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Stage Testing for Epistasis: Screening and Verification.
    Pecanka J; Jonker MA
    Methods Mol Biol; 2021; 2212():69-92. PubMed ID: 33733351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotype Prediction Under Epistasis.
    Vojgani E; Pook T; Simianer H
    Methods Mol Biol; 2021; 2212():105-120. PubMed ID: 33733353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Combined Analysis of Pleiotropy and Epistasis (CAPE).
    Tyler AL; Emerson J; El Kassaby B; Wells AE; Philip VM; Carter GW
    Methods Mol Biol; 2021; 2212():55-67. PubMed ID: 33733350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.
    Petinrin OO; Wong KC
    Methods Mol Biol; 2021; 2212():291-305. PubMed ID: 33733363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parallel and serial computing tools for testing single-locus and epistatic SNP effects of quantitative traits in genome-wide association studies.
    Ma L; Runesha HB; Dvorkin D; Garbe JR; Da Y
    BMC Bioinformatics; 2008 Jul; 9():315. PubMed ID: 18644146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies.
    Stamp J; DenAdel A; Weinreich D; Crawford L
    G3 (Bethesda); 2023 Aug; 13(8):. PubMed ID: 37243672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epi2Loc: an R package to investigate two-locus epistatic models.
    Walters RK; Laurin C; Lubke GH
    Twin Res Hum Genet; 2014 Aug; 17(4):272-8. PubMed ID: 24983251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PEPIS: A Pipeline for Estimating Epistatic Effects in Quantitative Trait Locus Mapping and Genome-Wide Association Studies.
    Zhang W; Dai X; Wang Q; Xu S; Zhao PX
    PLoS Comput Biol; 2016 May; 12(5):e1004925. PubMed ID: 27224861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging input and output structures for joint mapping of epistatic and marginal eQTLs.
    Lee S; Xing EP
    Bioinformatics; 2012 Jun; 28(12):i137-46. PubMed ID: 22689753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic architecture of growth traits in Populus revealed by integrated quantitative trait locus (QTL) analysis and association studies.
    Du Q; Gong C; Wang Q; Zhou D; Yang H; Pan W; Li B; Zhang D
    New Phytol; 2016 Feb; 209(3):1067-82. PubMed ID: 26499329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epistatic Networks Jointly Influence Phenotypes Related to Metabolic Disease and Gene Expression in Diversity Outbred Mice.
    Tyler AL; Ji B; Gatti DM; Munger SC; Churchill GA; Svenson KL; Carter GW
    Genetics; 2017 Jun; 206(2):621-639. PubMed ID: 28592500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet.
    Würschum T; Maurer HP; Schulz B; Möhring J; Reif JC
    Theor Appl Genet; 2011 Jun; 123(1):109-18. PubMed ID: 21448808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MatrixEpistasis: ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment.
    Zhu S; Fang G
    Bioinformatics; 2018 Jul; 34(14):2341-2348. PubMed ID: 29509873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Trait Loci (QTL) Mapping.
    Powder KE
    Methods Mol Biol; 2020; 2082():211-229. PubMed ID: 31849018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.