BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33734261)

  • 1. Spatial velocity correlations in inertial systems of active Brownian particles.
    Caprini L; Marini Bettolo Marconi U
    Soft Matter; 2021 Apr; 17(15):4109-4121. PubMed ID: 33734261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel.
    Khatri N; Kapral R
    J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collective effects in confined active Brownian particles.
    Caprini L; Maggi C; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jun; 154(24):244901. PubMed ID: 34241356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial self-propelled particles.
    Caprini L; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jan; 154(2):024902. PubMed ID: 33445896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The coherent motions of thermal active Brownian particles.
    Yang C; Zeng Y; Xu S; Zhou X
    Phys Chem Chem Phys; 2023 May; 25(18):13027-13032. PubMed ID: 37114336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rotational and translational diffusion in an interacting active dumbbell system.
    Cugliandolo LF; Gonnella G; Suma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062124. PubMed ID: 26172678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement.
    Breoni D; Schmiedeberg M; Löwen H
    Phys Rev E; 2020 Dec; 102(6-1):062604. PubMed ID: 33465967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial delay of self-propelled particles.
    Scholz C; Jahanshahi S; Ldov A; Löwen H
    Nat Commun; 2018 Dec; 9(1):5156. PubMed ID: 30514839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of active particles with translational and rotational inertia.
    Sprenger AR; Caprini L; Löwen H; Wittmann R
    J Phys Condens Matter; 2023 Apr; 35(30):. PubMed ID: 37059111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian motion with active fluctuations.
    Romanczuk P; Schimansky-Geier L
    Phys Rev Lett; 2011 Jun; 106(23):230601. PubMed ID: 21770491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial effects on trapped active matter.
    Gutierrez-Martinez LL; Sandoval M
    J Chem Phys; 2020 Jul; 153(4):044906. PubMed ID: 32752692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute negative mobility of active polymer chains in steady laminar flows.
    Wu JC; Lin FJ; Ai BQ
    Soft Matter; 2022 Feb; 18(6):1194-1200. PubMed ID: 35037681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Escape kinetics of self-propelled particles from a circular cavity.
    Debnath T; Chaudhury P; Mukherjee T; Mondal D; Ghosh PK
    J Chem Phys; 2021 Nov; 155(19):194102. PubMed ID: 34800947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertial dynamics of an active Brownian particle.
    Mayer Martins J; Wittkowski R
    Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.