These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 33734670)
1. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition. Song H; Lin Y; Zhang Z; Rao H; Wang W; Fang Y; Pan Z; Zhong X J Am Chem Soc; 2021 Mar; 143(12):4790-4800. PubMed ID: 33734670 [TBL] [Abstract][Full Text] [Related]
2. Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode. Wang W; Du J; Ren Z; Peng W; Pan Z; Zhong X ACS Appl Mater Interfaces; 2016 Nov; 8(45):31006-31015. PubMed ID: 27797169 [TBL] [Abstract][Full Text] [Related]
3. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%. Du J; Du Z; Hu JS; Pan Z; Shen Q; Sun J; Long D; Dong H; Sun L; Zhong X; Wan LJ J Am Chem Soc; 2016 Mar; 138(12):4201-9. PubMed ID: 26962680 [TBL] [Abstract][Full Text] [Related]
4. Solar Paint from TiO Shen G; Du Z; Pan Z; Du J; Zhong X ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952 [TBL] [Abstract][Full Text] [Related]
5. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. Wang J; Mora-Seró I; Pan Z; Zhao K; Zhang H; Feng Y; Yang G; Zhong X; Bisquert J J Am Chem Soc; 2013 Oct; 135(42):15913-22. PubMed ID: 24070636 [TBL] [Abstract][Full Text] [Related]
6. Facile Secondary Deposition for Improving Quantum Dot Loading in Fabricating Quantum Dot Solar Cells. Wang W; Zhao L; Wang Y; Xue W; He F; Xie Y; Li Y J Am Chem Soc; 2019 Mar; 141(10):4300-4307. PubMed ID: 30798596 [TBL] [Abstract][Full Text] [Related]
7. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12. Wang W; Feng W; Du J; Xue W; Zhang L; Zhao L; Li Y; Zhong X Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29359826 [TBL] [Abstract][Full Text] [Related]
8. High Efficiency Quantum Dot Sensitized Solar Cells Based on Direct Adsorption of Quantum Dots on Photoanodes. Wang W; Jiang G; Yu J; Wang W; Pan Z; Nakazawa N; Shen Q; Zhong X ACS Appl Mater Interfaces; 2017 Jul; 9(27):22549-22559. PubMed ID: 28621932 [TBL] [Abstract][Full Text] [Related]
9. Zn-Cu-In-S-Se Quinary "Green" Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4 . Song H; Lin Y; Zhou M; Rao H; Pan Z; Zhong X Angew Chem Int Ed Engl; 2021 Mar; 60(11):6137-6144. PubMed ID: 33258189 [TBL] [Abstract][Full Text] [Related]
10. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells. Ma C; Shi C; Lv K; Ying C; Fan S; Yang Y Nanoscale; 2019 Apr; 11(17):8402-8407. PubMed ID: 30985839 [TBL] [Abstract][Full Text] [Related]
11. Efficiency Enhancement of Solid-State CuInS Fu B; Deng C; Yang L Nanoscale Res Lett; 2019 Jun; 14(1):198. PubMed ID: 31172299 [TBL] [Abstract][Full Text] [Related]
12. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture. Chang JY; Lin JM; Su LF; Chang CF ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511 [TBL] [Abstract][Full Text] [Related]
13. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers. Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551 [TBL] [Abstract][Full Text] [Related]
14. Comparative advantages of Zn-Cu-In-S alloy QDs in the construction of quantum dot-sensitized solar cells. Yue L; Rao H; Du J; Pan Z; Yu J; Zhong X RSC Adv; 2018 Jan; 8(7):3637-3645. PubMed ID: 35542942 [TBL] [Abstract][Full Text] [Related]
15. Alloying Strategy in Cu-In-Ga-Se Quantum Dots for High Efficiency Quantum Dot Sensitized Solar Cells. Peng W; Du J; Pan Z; Nakazawa N; Sun J; Du Z; Shen G; Yu J; Hu JS; Shen Q; Zhong X ACS Appl Mater Interfaces; 2017 Feb; 9(6):5328-5336. PubMed ID: 28092935 [TBL] [Abstract][Full Text] [Related]
16. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots. Muthalif MPA; Sunesh CD; Choe Y J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116 [TBL] [Abstract][Full Text] [Related]
17. Boosting the Performance of Environmentally Friendly Quantum Dot-Sensitized Solar Cells over 13% Efficiency by Dual Sensitizers with Cascade Energy Structure. Pan Z; Yue L; Rao H; Zhang J; Zhong X; Zhu Z; Jen AK Adv Mater; 2019 Dec; 31(49):e1903696. PubMed ID: 31621961 [TBL] [Abstract][Full Text] [Related]
18. Carbon Counter-Electrode-Based Quantum-Dot-Sensitized Solar Cells with Certified Efficiency Exceeding 11. Du Z; Pan Z; Fabregat-Santiago F; Zhao K; Long D; Zhang H; Zhao Y; Zhong X; Yu JS; Bisquert J J Phys Chem Lett; 2016 Aug; 7(16):3103-11. PubMed ID: 27455143 [TBL] [Abstract][Full Text] [Related]