These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33734681)

  • 1. Molecular Rationale for Partitioning between C-H and C-F Bond Activation in Heme-Dependent Tyrosine Hydroxylase.
    Wang Y; Davis I; Shin I; Xu H; Liu A
    J Am Chem Soc; 2021 Mar; 143(12):4680-4693. PubMed ID: 33734681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heme peroxidase with a functional role as an L-tyrosine hydroxylase in the biosynthesis of anthramycin.
    Connor KL; Colabroy KL; Gerratana B
    Biochemistry; 2011 Oct; 50(41):8926-36. PubMed ID: 21919439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase.
    Peng W; Yan S; Zhang X; Liao L; Zhang J; Shaik S; Wang B
    J Am Chem Soc; 2022 Nov; 144(44):20484-20494. PubMed ID: 36282048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic Carbon-Hydrogen and Carbon-Fluorine Bond Cleavage through Hydroxylation Promoted by a Histidyl-Ligated Heme Enzyme.
    Wang Y; Davis I; Shin I; Wherritt DJ; Griffith WP; Dornevil K; Colabroy KL; Liu A
    ACS Catal; 2019 Jun; 9(6):4764-4776. PubMed ID: 31355048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences and comparisons of the properties and reactivities of iron(III)-hydroperoxo complexes with saturated coordination sphere.
    Faponle AS; Quesne MG; Sastri CV; Banse F; de Visser SP
    Chemistry; 2015 Jan; 21(3):1221-36. PubMed ID: 25399782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lincomycin biosynthesis involves a tyrosine hydroxylating heme protein of an unusual enzyme family.
    Novotna J; Olsovska J; Novak P; Mojzes P; Chaloupkova R; Kamenik Z; Spizek J; Kutejova E; Mareckova M; Tichy P; Damborsky J; Janata J
    PLoS One; 2013; 8(12):e79974. PubMed ID: 24324587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A flexible loop in tyrosine hydroxylase controls coupling of amino acid hydroxylation to tetrahydropterin oxidation.
    Daubner SC; McGinnis JT; Gardner M; Kroboth SL; Morris AR; Fitzpatrick PF
    J Mol Biol; 2006 Jun; 359(2):299-307. PubMed ID: 16618490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of tyrosine hydroxylase with bound cofactor analogue and iron at 2.3 A resolution: self-hydroxylation of Phe300 and the pterin-binding site.
    Goodwill KE; Sabatier C; Stevens RC
    Biochemistry; 1998 Sep; 37(39):13437-45. PubMed ID: 9753429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic isotope effects on the rate-limiting step of heme oxygenase catalysis indicate concerted proton transfer/heme hydroxylation.
    Davydov R; Matsui T; Fujii H; Ikeda-Saito M; Hoffman BM
    J Am Chem Soc; 2003 Dec; 125(52):16208-9. PubMed ID: 14692760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate Conformation Regulates Aromatic C-H Vs C-F Bond Activation in Heme-Dependent Tyrosine Hydroxylase.
    Singh W; Santos SFG; Yadav S; Black GW; Dubey KD
    Biochemistry; 2023 May; 62(10):1577-1587. PubMed ID: 37092990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of intrinsic rate constants in the tyrosine hydroxylase reaction.
    Eser BE; Fitzpatrick PF
    Biochemistry; 2010 Jan; 49(3):645-52. PubMed ID: 20025246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HYSCORE Analysis of the Effects of Substrates on Coordination of Water to the Active Site Iron in Tyrosine Hydroxylase.
    McCracken J; Eser BE; Mannikko D; Krzyaniak MD; Fitzpatrick PF
    Biochemistry; 2015 Jun; 54(24):3759-71. PubMed ID: 26024204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic deuterium isotope effects on benzylic hydroxylation by tyrosine hydroxylase.
    Frantom PA; Pongdee R; Sulikowski GA; Fitzpatrick PF
    J Am Chem Soc; 2002 Apr; 124(16):4202-3. PubMed ID: 11960436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity.
    Frantom PA; Seravalli J; Ragsdale SW; Fitzpatrick PF
    Biochemistry; 2006 Feb; 45(7):2372-9. PubMed ID: 16475826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decarboxylation involving a ferryl, propionate, and a tyrosyl group in a radical relay yields heme
    Streit BR; Celis AI; Moraski GC; Shisler KA; Shepard EM; Rodgers KR; Lukat-Rodgers GS; DuBois JL
    J Biol Chem; 2018 Mar; 293(11):3989-3999. PubMed ID: 29414780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic mononuclear nonheme iron-oxygen intermediates.
    Nam W
    Acc Chem Res; 2015 Aug; 48(8):2415-23. PubMed ID: 26203519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dioxygen activation by copper, heme and non-heme iron enzymes: comparison of electronic structures and reactivities.
    Decker A; Solomon EI
    Curr Opin Chem Biol; 2005 Apr; 9(2):152-63. PubMed ID: 15811799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.