These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 33734716)
1. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping. Lee JM; Lin D; Kim HR; Pyo YW; Hong G; Lieber CM; Park HG Nano Lett; 2021 Apr; 21(7):3184-3190. PubMed ID: 33734716 [TBL] [Abstract][Full Text] [Related]
2. Multifunctional Fibers as Tools for Neuroscience and Neuroengineering. Canales A; Park S; Kilias A; Anikeeva P Acc Chem Res; 2018 Apr; 51(4):829-838. PubMed ID: 29561583 [TBL] [Abstract][Full Text] [Related]
3. Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain. Zhou T; Hong G; Fu TM; Yang X; Schuhmann TG; Viveros RD; Lieber CM Proc Natl Acad Sci U S A; 2017 Jun; 114(23):5894-5899. PubMed ID: 28533392 [TBL] [Abstract][Full Text] [Related]
4. Nanoenabled Direct Contact Interfacing of Syringe-Injectable Mesh Electronics. Lee JM; Hong G; Lin D; Schuhmann TG; Sullivan AT; Viveros RD; Park HG; Lieber CM Nano Lett; 2019 Aug; 19(8):5818-5826. PubMed ID: 31361503 [TBL] [Abstract][Full Text] [Related]
5. Gene-Embedded Nanostructural Biotic-Abiotic Optoelectrode Arrays Applied for Synchronous Brain Optogenetics and Neural Signal Recording. Huang WC; Chi HS; Lee YC; Lo YC; Liu TC; Chiang MY; Chen HY; Li SJ; Chen YY; Chen SY ACS Appl Mater Interfaces; 2019 Mar; 11(12):11270-11282. PubMed ID: 30844235 [TBL] [Abstract][Full Text] [Related]
6. One-step optogenetics with multifunctional flexible polymer fibers. Park S; Guo Y; Jia X; Choe HK; Grena B; Kang J; Park J; Lu C; Canales A; Chen R; Yim YS; Choi GB; Fink Y; Anikeeva P Nat Neurosci; 2017 Apr; 20(4):612-619. PubMed ID: 28218915 [TBL] [Abstract][Full Text] [Related]
7. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode. Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813 [TBL] [Abstract][Full Text] [Related]
8. Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. Zhang J; Liu X; Xu W; Luo W; Li M; Chu F; Xu L; Cao A; Guan J; Tang S; Duan X Nano Lett; 2018 May; 18(5):2903-2911. PubMed ID: 29608857 [TBL] [Abstract][Full Text] [Related]
9. Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface. Schuhmann TG; Yao J; Hong G; Fu TM; Lieber CM Nano Lett; 2017 Sep; 17(9):5836-5842. PubMed ID: 28787578 [TBL] [Abstract][Full Text] [Related]
10. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring. Yu J; Ling W; Li Y; Ma N; Wu Z; Liang R; Pan H; Liu W; Fu B; Wang K; Li C; Wang H; Peng H; Ning B; Yang J; Huang X Small; 2021 Jan; 17(4):e2005925. PubMed ID: 33372299 [TBL] [Abstract][Full Text] [Related]
11. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. Wu F; Stark E; Im M; Cho IJ; Yoon ES; Buzsáki G; Wise KD; Yoon E J Neural Eng; 2013 Oct; 10(5):056012. PubMed ID: 23985803 [TBL] [Abstract][Full Text] [Related]
12. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. Shang X; Ling W; Chen Y; Li C; Huang X Small; 2023 Sep; 19(39):e2302241. PubMed ID: 37260144 [TBL] [Abstract][Full Text] [Related]
13. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues. Dai X; Hong G; Gao T; Lieber CM Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054 [TBL] [Abstract][Full Text] [Related]
14. Hybrid intracerebral probe with integrated bare LED chips for optogenetic studies. Ayub S; Gentet LJ; Fiáth R; Schwaerzle M; Borel M; David F; Barthó P; Ulbert I; Paul O; Ruther P Biomed Microdevices; 2017 Sep; 19(3):49. PubMed ID: 28560702 [TBL] [Abstract][Full Text] [Related]
15. An in vitro demonstration of CMOS-based optoelectronic neural interface device for optogenetics. Tokuda T; Nakajima S; Maezawa Y; Noda T; Sasagawa K; Ishikawa Y; Shiosaka S; Ohta J Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():799-802. PubMed ID: 24109808 [TBL] [Abstract][Full Text] [Related]
16. Spatially expandable fiber-based probes as a multifunctional deep brain interface. Jiang S; Patel DC; Kim J; Yang S; Mills WA; Zhang Y; Wang K; Feng Z; Vijayan S; Cai W; Wang A; Guo Y; Kimbrough IF; Sontheimer H; Jia X Nat Commun; 2020 Nov; 11(1):6115. PubMed ID: 33257708 [TBL] [Abstract][Full Text] [Related]
17. Syringe-injectable Mesh Electronics for Stable Chronic Rodent Electrophysiology. Schuhmann TG; Zhou T; Hong G; Lee JM; Fu TM; Park HG; Lieber CM J Vis Exp; 2018 Jul; (137):. PubMed ID: 30080192 [TBL] [Abstract][Full Text] [Related]
18. An implantable optogenetic stimulator wirelessly powered by flexible photovoltaics with near-infrared (NIR) light. Jeong J; Jung J; Jung D; Kim J; Ju H; Kim T; Lee J Biosens Bioelectron; 2021 May; 180():113139. PubMed ID: 33714161 [TBL] [Abstract][Full Text] [Related]
19. Flexible and fully implantable upconversion device for wireless optogenetic stimulation of the spinal cord in behaving animals. Wang Y; Xie K; Yue H; Chen X; Luo X; Liao Q; Liu M; Wang F; Shi P Nanoscale; 2020 Jan; 12(4):2406-2414. PubMed ID: 31782467 [TBL] [Abstract][Full Text] [Related]
20. Long-Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core-Shell Nanowires. Araki T; Yoshida F; Uemura T; Noda Y; Yoshimoto S; Kaiju T; Suzuki T; Hamanaka H; Baba K; Hayakawa H; Yabumoto T; Mochizuki H; Kobayashi S; Tanaka M; Hirata M; Sekitani T Adv Healthc Mater; 2019 May; 8(10):e1900130. PubMed ID: 30946540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]