BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33735402)

  • 1. The utilisation of 3D printing in paediatric neurosurgery.
    Karuppiah R; Munusamy T; Bahuri NFA; Waran V
    Childs Nerv Syst; 2021 May; 37(5):1479-1484. PubMed ID: 33735402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creation of a novel simulator for minimally invasive neurosurgery: fusion of 3D printing and special effects.
    Weinstock P; Rehder R; Prabhu SP; Forbes PW; Roussin CJ; Cohen AR
    J Neurosurg Pediatr; 2017 Jul; 20(1):1-9. PubMed ID: 28438070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of 3-Dimensional Printing on Cranial Neurosurgery Simulation Training.
    Vakharia VN; Vakharia NN; Hill CS
    World Neurosurg; 2016 Apr; 88():188-198. PubMed ID: 26724615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using 3D Printing to Create Personalized Brain Models for Neurosurgical Training and Preoperative Planning.
    Ploch CC; Mansi CSSA; Jayamohan J; Kuhl E
    World Neurosurg; 2016 Jun; 90():668-674. PubMed ID: 26924117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printing in Neurosurgery Residency Training: A Systematic Review of the Literature.
    Blohm JE; Salinas PA; Avila MJ; Barber SR; Weinand ME; Dumont TM
    World Neurosurg; 2022 May; 161():111-122. PubMed ID: 34648984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Modeling in Training, Simulation, and Surgical Planning in Open Vascular and Endovascular Neurosurgery: A Systematic Review of the Literature.
    McGuire LS; Fuentes A; Alaraj A
    World Neurosurg; 2021 Oct; 154():53-63. PubMed ID: 34293525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Craniosynostosis Puzzle: New Simulation Model for Neurosurgical Training.
    Coelho G; Rabelo NN; Adani LB; Cecilio-Fernandes D; Souza Carvalho FR; Pinto FG; Zanon N; Teixeira MJ; Figueiredo EG
    World Neurosurg; 2020 Jun; 138():e299-e304. PubMed ID: 32109642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printing for preoperative planning and surgical training: a review.
    Ganguli A; Pagan-Diaz GJ; Grant L; Cvetkovic C; Bramlet M; Vozenilek J; Kesavadas T; Bashir R
    Biomed Microdevices; 2018 Aug; 20(3):65. PubMed ID: 30078059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral Aneurysm Clipping Surgery Simulation Using Patient-Specific 3D Printing and Silicone Casting.
    Ryan JR; Almefty KK; Nakaji P; Frakes DH
    World Neurosurg; 2016 Apr; 88():175-181. PubMed ID: 26805698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printed Skull Base Simulation for Transnasal Endoscopic Surgical Training.
    Zheng JP; Li CZ; Chen GQ; Song GD; Zhang YZ
    World Neurosurg; 2018 Mar; 111():e773-e782. PubMed ID: 29309974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons.
    Waran V; Narayanan V; Karuppiah R; Owen SL; Aziz T
    J Neurosurg; 2014 Feb; 120(2):489-92. PubMed ID: 24321044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Skull defect repair in children using a 3D-printing technology].
    Sulin KA; Ivanov VP; Kim AV; Khachatryan VA
    Zh Vopr Neirokhir Im N N Burdenko; 2020; 84(6):67-75. PubMed ID: 33306301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microcontroller-based simulation of dural venous sinus injury for neurosurgical training.
    Cleary DR; Siler DA; Whitney N; Selden NR
    J Neurosurg; 2018 May; 128(5):1553-1559. PubMed ID: 28574314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and initial evaluation of a novel simulation model for comprehensive brain tumor surgery training.
    Grosch AS; Schröder T; Schröder T; Onken J; Picht T
    Acta Neurochir (Wien); 2020 Aug; 162(8):1957-1965. PubMed ID: 32385637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing in Neurosurgery.
    Tomasello F; Conti A; La Torre D
    World Neurosurg; 2016 Jul; 91():633-4. PubMed ID: 27108033
    [No Abstract]   [Full Text] [Related]  

  • 16. Three-dimensional intracranial middle cerebral artery aneurysm models for aneurysm surgery and training.
    Wang L; Ye X; Hao Q; Ma L; Chen X; Wang H; Zhao Y
    J Clin Neurosci; 2018 Apr; 50():77-82. PubMed ID: 29439905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties and Characteristics of Three-Dimensional Printed Head Models Used in Simulation of Neurosurgical Procedures: A Scoping Review.
    Maclachlan LR; Alexander H; Forrestal D; Novak JI; Redmond M
    World Neurosurg; 2021 Dec; 156():133-146.e6. PubMed ID: 34571242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of Next-Generation Neurosurgery Research and Training Laboratory with Integrated Human Performance Monitoring.
    Bernardo A
    World Neurosurg; 2017 Oct; 106():991-1000. PubMed ID: 28985669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of Three-Dimensional Printed Craniocerebral Models for Simulated Neurosurgery.
    Lan Q; Chen A; Zhang T; Li G; Zhu Q; Fan X; Ma C; Xu T
    World Neurosurg; 2016 Jul; 91():434-42. PubMed ID: 27132180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-specific 3-dimensionally printed models for neurosurgical planning and education.
    Panesar SS; Magnetta M; Mukherjee D; Abhinav K; Branstetter BF; Gardner PA; Iv M; Fernandez-Miranda JC
    Neurosurg Focus; 2019 Dec; 47(6):E12. PubMed ID: 31786547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.