BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33735458)

  • 1. Efficient chito-oligosaccharide utilization requires two TonB-dependent transporters and one hexosaminidase in Cellvibrio japonicus.
    Monge EC; Gardner JG
    Mol Microbiol; 2021 Aug; 116(2):366-380. PubMed ID: 33735458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systems analysis of the glycoside hydrolase family 18 enzymes from
    Monge EC; Tuveng TR; Vaaje-Kolstad G; Eijsink VGH; Gardner JG
    J Biol Chem; 2018 Mar; 293(10):3849-3859. PubMed ID: 29367339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trehalose Degradation by Cellvibrio japonicus Exhibits No Functional Redundancy and Is Solely Dependent on the Tre37A Enzyme.
    Garcia CA; Narrett JA; Gardner JG
    Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic investigation of the secretome of Cellvibrio japonicus during growth on chitin.
    Tuveng TR; Arntzen MØ; Bengtsson O; Gardner JG; Vaaje-Kolstad G; Eijsink VG
    Proteomics; 2016 Jul; 16(13):1904-14. PubMed ID: 27169553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complex physiology of Cellvibrio japonicus xylan degradation relies on a single cytoplasmic β-xylosidase for xylo-oligosaccharide utilization.
    Blake AD; Beri NR; Guttman HS; Cheng R; Gardner JG
    Mol Microbiol; 2018 Mar; 107(5):610-622. PubMed ID: 29266479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNAseq analysis of
    Garcia CA; Gardner JG
    Microbiol Spectr; 2023 Dec; 11(6):e0245723. PubMed ID: 37800973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural characterization of a potent GH74 endo-xyloglucanase from the soil saprophyte Cellvibrio japonicus unravels the first step of xyloglucan degradation.
    Attia M; Stepper J; Davies GJ; Brumer H
    FEBS J; 2016 May; 283(9):1701-19. PubMed ID: 26929175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into plant cell wall degradation from the genome sequence of the soil bacterium Cellvibrio japonicus.
    DeBoy RT; Mongodin EF; Fouts DE; Tailford LE; Khouri H; Emerson JB; Mohamoud Y; Watkins K; Henrissat B; Gilbert HJ; Nelson KE
    J Bacteriol; 2008 Aug; 190(15):5455-63. PubMed ID: 18556790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.
    Gardner JG
    World J Microbiol Biotechnol; 2016 Jul; 32(7):121. PubMed ID: 27263016
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-Based Protein Profiling of Chitin Catabolism.
    Zegeye EK; Sadler NC; Lomas GX; Attah IK; Jansson JK; Hofmockel KS; Anderton CR; Wright AT
    Chembiochem; 2021 Feb; 22(4):717-723. PubMed ID: 33049124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Family of Carbohydrate-Binding Modules Defined by a Galactosyl-Binding Protein Module from a Cellvibrio japonicus Endo-Xyloglucanase.
    Attia MA; Brumer H
    Appl Environ Microbiol; 2021 Feb; 87(5):e0263420. PubMed ID: 33355108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus.
    Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G
    J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and enzymatic characterization of Amy13E from
    Mascelli GM; Garcia CA; Gardner JG
    Appl Environ Microbiol; 2024 Jan; 90(1):e0152123. PubMed ID: 38084944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A complex gene locus enables xyloglucan utilization in the model saprophyte Cellvibrio japonicus.
    Larsbrink J; Thompson AJ; Lundqvist M; Gardner JG; Davies GJ; Brumer H
    Mol Microbiol; 2014 Oct; 94(2):418-33. PubMed ID: 25171165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Requirement of the type II secretion system for utilization of cellulosic substrates by Cellvibrio japonicus.
    Gardner JG; Keating DH
    Appl Environ Microbiol; 2010 Aug; 76(15):5079-87. PubMed ID: 20543053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional variation of chitin-binding domains of a lytic polysaccharide monooxygenase from Cellvibrio japonicus.
    Madland E; Forsberg Z; Wang Y; Lindorff-Larsen K; Niebisch A; Modregger J; Eijsink VGH; Aachmann FL; Courtade G
    J Biol Chem; 2021 Oct; 297(4):101084. PubMed ID: 34411561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in Cellvibrio japonicus.
    Nelson CE; Gardner JG
    Appl Environ Microbiol; 2015 Sep; 81(17):5968-75. PubMed ID: 26116676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive functional characterization of the glycoside hydrolase family 3 enzymes from Cellvibrio japonicus reveals unique metabolic roles in biomass saccharification.
    Nelson CE; Attia MA; Rogowski A; Morland C; Brumer H; Gardner JG
    Environ Microbiol; 2017 Dec; 19(12):5025-5039. PubMed ID: 29052930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural enzymology of Cellvibrio japonicus Agd31B protein reveals α-transglucosylase activity in glycoside hydrolase family 31.
    Larsbrink J; Izumi A; Hemsworth GR; Davies GJ; Brumer H
    J Biol Chem; 2012 Dec; 287(52):43288-99. PubMed ID: 23132856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Galactomannan utilization by Cellvibrio japonicus relies on a single essential α-galactosidase encoded by the aga27A gene.
    Novak JK; Gardner JG
    Mol Microbiol; 2023 Mar; 119(3):312-325. PubMed ID: 36604822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.