These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 33735718)
1. Comparing different pre-processing routines for infant fNIRS data. Gemignani J; Gervain J Dev Cogn Neurosci; 2021 Apr; 48():100943. PubMed ID: 33735718 [TBL] [Abstract][Full Text] [Related]
2. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Brigadoi S; Ceccherini L; Cutini S; Scarpa F; Scatturin P; Selb J; Gagnon L; Boas DA; Cooper RJ Neuroimage; 2014 Jan; 85 Pt 1(0 1):181-91. PubMed ID: 23639260 [TBL] [Abstract][Full Text] [Related]
3. A deep convolutional neural network for estimating hemodynamic response function with reduction of motion artifacts in fNIRS. Kim M; Lee S; Dan I; Tak S J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35038682 [No Abstract] [Full Text] [Related]
4. Recommendations for motion correction of infant fNIRS data applicable to multiple data sets and acquisition systems. Di Lorenzo R; Pirazzoli L; Blasi A; Bulgarelli C; Hakuno Y; Minagawa Y; Brigadoi S Neuroimage; 2019 Oct; 200():511-527. PubMed ID: 31247300 [TBL] [Abstract][Full Text] [Related]
5. Comparison of motion correction techniques applied to functional near-infrared spectroscopy data from children. Hu XS; Arredondo MM; Gomba M; Confer N; DaSilva AF; Johnson TD; Shalinsky M; Kovelman I J Biomed Opt; 2015; 20(12):126003. PubMed ID: 26662300 [TBL] [Abstract][Full Text] [Related]
6. Effect of confounding variables on hemodynamic response function estimation using averaging and deconvolution analysis: An event-related NIRS study. Aarabi A; Osharina V; Wallois F Neuroimage; 2017 Jul; 155():25-49. PubMed ID: 28450140 [TBL] [Abstract][Full Text] [Related]
7. Bayesian filtering of human brain hemodynamic activity elicited by visual short-term maintenance recorded through functional near-infrared spectroscopy (fNIRS). Scarpa F; Cutini S; Scatturin P; Dell'Acqua R; Sparacino G Opt Express; 2010 Dec; 18(25):26550-68. PubMed ID: 21165006 [TBL] [Abstract][Full Text] [Related]
8. Hybrid motion artifact detection and correction approach for functional near-infrared spectroscopy measurements. Gao L; Wei Y; Wang Y; Wang G; Zhang Q; Zhang J; Chen X; Yan X J Biomed Opt; 2022 Feb; 27(2):. PubMed ID: 35212200 [TBL] [Abstract][Full Text] [Related]
9. Motion Artifact Correction of Multi-Measured Functional Near-Infrared Spectroscopy Signals Based on Signal Reconstruction Using an Artificial Neural Network. Lee G; Jin SH; An J Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189651 [TBL] [Abstract][Full Text] [Related]
10. A new blind source separation framework for signal analysis and artifact rejection in functional Near-Infrared Spectroscopy. von Lühmann A; Boukouvalas Z; Müller KR; Adalı T Neuroimage; 2019 Oct; 200():72-88. PubMed ID: 31203024 [TBL] [Abstract][Full Text] [Related]
11. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data. Chiarelli AM; Maclin EL; Fabiani M; Gratton G Neuroimage; 2015 May; 112():128-137. PubMed ID: 25747916 [TBL] [Abstract][Full Text] [Related]
12. A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Cooper RJ; Selb J; Gagnon L; Phillip D; Schytz HW; Iversen HK; Ashina M; Boas DA Front Neurosci; 2012; 6():147. PubMed ID: 23087603 [TBL] [Abstract][Full Text] [Related]
13. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
14. Temporal Derivative Distribution Repair (TDDR): A motion correction method for fNIRS. Fishburn FA; Ludlum RS; Vaidya CJ; Medvedev AV Neuroimage; 2019 Jan; 184():171-179. PubMed ID: 30217544 [TBL] [Abstract][Full Text] [Related]
16. Dynamic causal modelling on infant fNIRS data: A validation study on a simultaneously recorded fNIRS-fMRI dataset. Bulgarelli C; Blasi A; Arridge S; Powell S; de Klerk CCJM; Southgate V; Brigadoi S; Penny W; Tak S; Hamilton A Neuroimage; 2018 Jul; 175():413-424. PubMed ID: 29655936 [TBL] [Abstract][Full Text] [Related]
17. Characterization and correction of the false-discovery rates in resting state connectivity using functional near-infrared spectroscopy. Santosa H; Aarabi A; Perlman SB; Huppert TJ J Biomed Opt; 2017 May; 22(5):55002. PubMed ID: 28492852 [TBL] [Abstract][Full Text] [Related]
19. Comparing different motion correction approaches for resting-state functional connectivity analysis with functional near-infrared spectroscopy data. Iester C; Bonzano L; Biggio M; Cutini S; Bove M; Brigadoi S Neurophotonics; 2024 Oct; 11(4):045001. PubMed ID: 39372120 [TBL] [Abstract][Full Text] [Related]
20. The Temporal Muscle of the Head Can Cause Artifacts in Optical Imaging Studies with Functional Near-Infrared Spectroscopy. Schecklmann M; Mann A; Langguth B; Ehlis AC; Fallgatter AJ; Haeussinger FB Front Hum Neurosci; 2017; 11():456. PubMed ID: 28966580 [No Abstract] [Full Text] [Related] [Next] [New Search]