These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33735989)

  • 1. Graphene as an alignment agent, an electrode, and a source of surface chirality in a smectic-A liquid crystal.
    Basu R
    Phys Rev E; 2021 Feb; 103(2-1):022710. PubMed ID: 33735989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices.
    Basu R; Shalov SA
    Phys Rev E; 2017 Jul; 96(1-1):012702. PubMed ID: 29347202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nematic electroclinic effect in a carbon-nanotube-doped achiral liquid crystal.
    Basu R; Petschek RG; Rosenblatt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041707. PubMed ID: 21599186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional hexagonal boron nitride nanosheet as the planar-alignment agent in a liquid crystal-based electro-optic device.
    Basu R; Atwood LJ
    Opt Express; 2019 Jan; 27(1):282-292. PubMed ID: 30645374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chiral oily streaks in a smectic-A liquid crystal.
    Nemitz IR; Ferris AJ; Lacaze E; Rosenblatt C
    Soft Matter; 2016 Aug; 12(31):6662-8. PubMed ID: 27426740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of effective polar anchoring strength and accelerated electro-optic switching in a two-dimensional hexagonal boron nitride/polyimide hybrid liquid crystal device.
    Basu R
    Appl Opt; 2019 Aug; 58(24):6678-6683. PubMed ID: 31503600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasidivergent nematic surface electroclinic effect.
    Zhu MH; Carbone G; Rosenblatt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041701. PubMed ID: 16711821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroclinic effect in a chiral paranematic liquid-crystal layer above the bulk nematic-to-isotropic transition temperature.
    Nemitz IR; Lacaze E; Rosenblatt C
    Phys Rev E; 2016 Feb; 93(2):022701. PubMed ID: 26986382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically generated surface chirality at the nanoscale.
    Ferjani S; Choi Y; Pendery J; Petschek RG; Rosenblatt C
    Phys Rev Lett; 2010 Jun; 104(25):257801. PubMed ID: 20867414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic torsional strain and induced molecular conformational deracemization.
    Basu R; Pendery JS; Petschek RG; Lemieux RP; Rosenblatt C
    Phys Rev Lett; 2011 Dec; 107(23):237804. PubMed ID: 22182127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-induced molecular tilt above the smectic-A-smectic-C phase transition in a nonchiral liquid crystal.
    Syed IM; Rosenblatt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031701. PubMed ID: 14524782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroclinic effect in a chiral smectic-A liquid crystal stabilized by an anisotropic polymer network.
    Petit M; Daoudi A; Ismaili M; Buisine JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061707. PubMed ID: 17280084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Indium-Tin Oxide Crystal on Plastic Substrates Supported by Graphene Monolayer.
    Lee SJ; Kim Y; Hwang JY; Lee JH; Jung S; Park H; Cho S; Nahm S; Yang WS; Kim H; Han SH
    Sci Rep; 2017 Jun; 7(1):3131. PubMed ID: 28600488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroclinic effect in nematic liquid crystals: the role of molecular and environmental chirality.
    Greco C; Ferrarini A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):060501. PubMed ID: 23848613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching.
    Basu R
    Phys Rev E; 2017 Jul; 96(1-1):012707. PubMed ID: 29347260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of nanocomposites of carbon nanotubes and a negative dielectric anisotropy liquid crystal.
    Kalakonda P; Basu R; Nemitz IR; Rosenblatt C; Iannacchione GS
    J Chem Phys; 2014 Mar; 140(10):104908. PubMed ID: 24628206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the field control of the surface electroclinic effect near continuous and first-order smectic-A* to smectic-C* transitions.
    Zappitelli K; Hipolite DN; Saunders K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022502. PubMed ID: 25353484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroclinic effect in chiral smectic-A liquid crystal elastomers.
    Cohen N; Bhattacharya K
    Phys Rev E; 2017 Sep; 96(3-1):032701. PubMed ID: 29346958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrically Controlled Liquid Crystal Microlens Array Based on Single-Crystal Graphene Coupling Alignment for Plenoptic Imaging.
    Chen M; Shao Q; He W; Wei D; Hu C; Shi J; Liu K; Wang H; Xie C; Zhang X
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33256175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal.
    Harjung MD; Giesselmann F
    Phys Rev E; 2018 Mar; 97(3-1):032705. PubMed ID: 29776115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.