These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33735993)

  • 1. Autonomous Brownian gyrators: A study on gyrating characteristics.
    Chang H; Lee CL; Lai PY; Chen YF
    Phys Rev E; 2021 Feb; 103(2-1):022128. PubMed ID: 33735993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium steady state of a stochastic system driven by a nonlinear drift force.
    Kwon C; Ao P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061106. PubMed ID: 22304039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions.
    Híjar H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytic Solution of an Active Brownian Particle in a Harmonic Well.
    Caraglio M; Franosch T
    Phys Rev Lett; 2022 Oct; 129(15):158001. PubMed ID: 36269953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical autonomous Brownian gyrator.
    Chiang KH; Lee CL; Lai PY; Chen YF
    Phys Rev E; 2017 Sep; 96(3-1):032123. PubMed ID: 29347040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stationary states of an active Brownian particle in a harmonic trap.
    Nakul U; Gopalakrishnan M
    Phys Rev E; 2023 Aug; 108(2-1):024121. PubMed ID: 37723685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial effects on the Brownian gyrator.
    Bae Y; Lee S; Kim J; Jeong H
    Phys Rev E; 2021 Mar; 103(3-1):032148. PubMed ID: 33862720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of nonequilibrium asymptotic state thermodynamics: Interacting Ehrenfest urn ring as an example.
    Cheng CH; Lai PY
    Phys Rev E; 2023 Dec; 108(6-1):064114. PubMed ID: 38243422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium dynamics and entropy production of a trapped colloidal particle in a complex nonreciprocal medium.
    Fernandez L; Hess S; Klapp SHL
    Phys Rev E; 2024 May; 109(5-1):054129. PubMed ID: 38907489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kappa and other nonequilibrium distributions from the Fokker-Planck equation and the relationship to Tsallis entropy.
    Shizgal BD
    Phys Rev E; 2018 May; 97(5-1):052144. PubMed ID: 29906998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probability distributions extremizing the nonadditive entropy S(δ) and stationary states of the corresponding nonlinear Fokker-Planck equation.
    Ribeiro MS; Tsallis C; Nobre FD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052107. PubMed ID: 24329214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the smallest nonvanishing eigenvalue of the fokker-planck equation for brownian motion in a potential: the continued fraction approach.
    Kalmykov YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jun; 61(6 Pt A):6320-9. PubMed ID: 11088307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion Monte Carlo study on temporal evolution of entropy and free energy in nonequilibrium processes.
    Tanaka S
    J Chem Phys; 2016 Mar; 144(9):094103. PubMed ID: 26957153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles.
    Lukassen LJ; Oberlack M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Fokker-Planck-Kramers equation and entropy production.
    de Oliveira MJ
    Phys Rev E; 2016 Jul; 94(1-1):012128. PubMed ID: 27575097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting properties of the stationary probability currents for two-species reaction systems without solving the Fokker-Planck equation.
    Mendler M; Drossel B
    Phys Rev E; 2020 Aug; 102(2-1):022208. PubMed ID: 32942514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physically consistent numerical solver for time-dependent Fokker-Planck equations.
    Holubec V; Kroy K; Steffenoni S
    Phys Rev E; 2019 Mar; 99(3-1):032117. PubMed ID: 30999402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective rate equations for the overdamped motion in fluctuating potentials.
    Mielke A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021106. PubMed ID: 11497561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag.
    Patrón A; Sánchez-Rey B; Prados A
    Phys Rev E; 2021 Dec; 104(6-1):064127. PubMed ID: 35030916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy production in irreversible systems described by a Fokker-Planck equation.
    Tomé T; de Oliveira MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021120. PubMed ID: 20866788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.