These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33736003)

  • 21. Critical transitions in heterogeneous networks: Loss of low-degree nodes as an early warning signal.
    Loppini A; Filippi S; Stanley HE
    Phys Rev E; 2019 Apr; 99(4-1):040301. PubMed ID: 31108675
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying the key catastrophic variables of urban social-environmental resilience and early warning signal.
    Li Y; Li Y; Kappas M; Pavao-Zuckerman M
    Environ Int; 2018 Apr; 113():184-190. PubMed ID: 29428608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Entropy production as a tool for characterizing nonequilibrium phase transitions.
    Noa CEF; Harunari PE; de Oliveira MJ; Fiore CE
    Phys Rev E; 2019 Jul; 100(1-1):012104. PubMed ID: 31499824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonequilibrium transitions in complex networks: a model of social interaction.
    Klemm K; Eguíluz VM; Toral R; San Miguel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026120. PubMed ID: 12636761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers.
    Dai L; Korolev KS; Gore J
    Proc Natl Acad Sci U S A; 2015 Aug; 112(32):10056-61. PubMed ID: 26216946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controllability of flow-conservation networks.
    Zhao C; Zeng A; Jiang R; Yuan Z; Wang WX
    Phys Rev E; 2017 Jul; 96(1-1):012314. PubMed ID: 29347124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective centrality and explosive synchronization in complex networks.
    Navas A; Villacorta-Atienza JA; Leyva I; Almendral JA; Sendiña-Nadal I; Boccaletti S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062820. PubMed ID: 26764757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Adaptive Synchronization of Ring Configured Uncertain Chaotic FitzHugh-Nagumo Neurons under Direction-Dependent Coupling.
    Iqbal M; Rehan M; Hong KS
    Front Neurorobot; 2018; 12():6. PubMed ID: 29535622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early warning signals of regime shifts in coupled human-environment systems.
    Bauch CT; Sigdel R; Pharaon J; Anand M
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14560-14567. PubMed ID: 27815533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complexity and irreducibility of dynamics on networks of networks.
    Rydin Gorjão L; Saha A; Ansmann G; Feudel U; Lehnertz K
    Chaos; 2018 Oct; 28(10):106306. PubMed ID: 30384647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wavy fronts in a hyperbolic FitzHugh-Nagumo system and the effects of cross diffusion.
    Zemskov EP; Tsyganov MA; Horsthemke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062917. PubMed ID: 26172782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synchronization in heterogeneous FitzHugh-Nagumo networks with hierarchical architecture.
    Plotnikov SA; Lehnert J; Fradkov AL; Schöll E
    Phys Rev E; 2016 Jul; 94(1-1):012203. PubMed ID: 27575119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchy measurement for modeling network dynamics under directed attacks.
    Rubinson M; Levit-Binnun N; Peled A; Naim-Feil J; Freche D; Moses E
    Phys Rev E; 2017 Nov; 96(5-1):052307. PubMed ID: 29347771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resilience of supply-chain systems under perturbations: A network approach.
    Zhou W; Zhang Q
    Chaos; 2022 Sep; 32(9):093123. PubMed ID: 36182389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial early warning signals for impending regime shifts: A practical framework for application in real-world landscapes.
    Nijp JJ; Temme AJAM; van Voorn GAK; Kooistra L; Hengeveld GM; Soons MB; Teuling AJ; Wallinga J
    Glob Chang Biol; 2019 Jun; 25(6):1905-1921. PubMed ID: 30761695
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Network resilience of phosphorus cycling in China has shifted by natural flows, fertilizer use and dietary transitions between 1600 and 2012.
    Liang S; Yu Y; Kharrazi A; Fath BD; Feng C; Daigger GT; Chen S; Ma T; Zhu B; Mi Z; Yang Z
    Nat Food; 2020 Jun; 1(6):365-375. PubMed ID: 37128100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relation between structural and functional connectivity patterns in complex brain networks.
    Stam CJ; van Straaten EC; Van Dellen E; Tewarie P; Gong G; Hillebrand A; Meier J; Van Mieghem P
    Int J Psychophysiol; 2016 May; 103():149-60. PubMed ID: 25678023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Resilience function uncovers the critical transitions in cancer initiation.
    Li Y; Zhang SW
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33954583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic changes in network synchrony reveal resting-state functional networks.
    Vuksanović V; Hövel P
    Chaos; 2015 Feb; 25(2):023116. PubMed ID: 25725652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Universal resilience patterns in complex networks.
    Gao J; Barzel B; Barabási AL
    Nature; 2016 Feb; 530(7590):307-12. PubMed ID: 26887493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.