These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 33736026)

  • 21. Short-term prediction of dynamical behavior of flame front instability induced by radiative heat loss.
    Gotoda H; Ikawa T; Maki K; Miyano T
    Chaos; 2012 Sep; 22(3):033106. PubMed ID: 23020445
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nonperturbative approach to the nonlinear dynamics of two-dimensional premixed flames.
    El-Rabii H; Joulin G; Kazakov KA
    Phys Rev Lett; 2008 May; 100(17):174501. PubMed ID: 18518294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the Darrieus-Landau instability on turbulent flame velocity.
    Zaytsev M; Bychkov V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026310. PubMed ID: 12241288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of the Inclination Angle on Premixed Flame Dynamics in Half-Open Ducts.
    Yao Z; Deng H; Dong J; Wen X; Zhao W; Wang F; Chen G; Zhang X; Zhang Q
    ACS Omega; 2020 Sep; 5(38):24906-24915. PubMed ID: 33015510
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonlinear dynamics of flame fronts with large-scale stabilizing effects.
    Radisson B; Denet B; Almarcha C
    Phys Rev E; 2021 Jun; 103(6-1):063104. PubMed ID: 34271730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rayleigh-Taylor instability for immiscible fluids of arbitrary viscosities: a magnetic levitation investigation and theoretical model.
    Carlès P; Huang Z; Carbone G; Rosenblatt C
    Phys Rev Lett; 2006 Mar; 96(10):104501. PubMed ID: 16605739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces.
    Cordoba A; Cordoba D; Gancedo F
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10955-9. PubMed ID: 19553208
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of Partial Flame Propagation and Extinction in a Strong Gravitational Field.
    Kazakov KA
    Phys Rev Lett; 2015 Dec; 115(26):264501. PubMed ID: 26764992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flame front detection and characterization using conditioned particle image velocimetry (CPIV).
    Pfadler S; Beyrau F; Leipertz A
    Opt Express; 2007 Nov; 15(23):15444-56. PubMed ID: 19550830
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Viscous dynamics of drops and bubbles in Hele-Shaw cells: Drainage, drag friction, coalescence, and bursting.
    Okumura K
    Adv Colloid Interface Sci; 2018 May; 255():64-75. PubMed ID: 28821348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pattern formation driven by an acid-base neutralization reaction in aqueous media in a gravitational field.
    Zalts A; El Hasi C; Rubio D; Ureña A; D'Onofrio A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):015304. PubMed ID: 18351907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flame speed and self-similar propagation of expanding turbulent premixed flames.
    Chaudhuri S; Wu F; Zhu D; Law CK
    Phys Rev Lett; 2012 Jan; 108(4):044503. PubMed ID: 22400849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal chaos in the dynamics of buoyantly and diffusively unstable chemical fronts.
    Baroni MP; Guéron E; De Wit A
    Chaos; 2012 Mar; 22(1):013134. PubMed ID: 22463010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermonuclear supernovae: simulations of the deflagration stage and their implications.
    Gamezo VN; Khokhlov AM; Oran ES; Chtchelkanova AY; Rosenberg RO
    Science; 2003 Jan; 299(5603):77-81. PubMed ID: 12446871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Violent folding of a flame front in a flame-acoustic resonance.
    Petchenko A; Bychkov V; Akkerman V; Eriksson LE
    Phys Rev Lett; 2006 Oct; 97(16):164501. PubMed ID: 17155402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts.
    Levitán D; D'Onofrio A
    Chaos; 2012 Sep; 22(3):037107. PubMed ID: 23020498
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of a crosslinking chemical reaction on pattern formation in viscous fingering of miscible fluids in a Hele-Shaw cell.
    Bunton PH; Tullier MP; Meiburg E; Pojman JA
    Chaos; 2017 Oct; 27(10):104614. PubMed ID: 29092415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Experimental and numerical study of premixed hydrogen/air flame propagating in a combustion chamber.
    Xiao H; Sun J; Chen P
    J Hazard Mater; 2014 Mar; 268():132-9. PubMed ID: 24486615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dispersion relations for the convective instability of an acidity front in Hele-Shaw cells.
    Vasquez DA; De Wit A
    J Chem Phys; 2004 Jul; 121(2):935-41. PubMed ID: 15260625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative planar temperature imaging in turbulent non-premixed flames using filtered Rayleigh scattering.
    McManus TA; Sutton JA
    Appl Opt; 2019 Apr; 58(11):2936-2947. PubMed ID: 31044899
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.