These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33736071)

  • 1. Study of inertial electrostatic confinement fusion using a finite-volume scheme for the one-dimensional Vlasov equation.
    Black J; Wood-Thanan M; Maroni A; Sánchez E
    Phys Rev E; 2021 Feb; 103(2-1):023212. PubMed ID: 33736071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deuterium anions in inertial electrostatic confinement devices.
    Boris DR; Alderson E; Becerra G; Donovan DC; Egle B; Emmert GA; Garrison L; Kulcinski GL; Santarius JF; Schuff C; Zenobia SJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036408. PubMed ID: 19905231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring time of flight of fusion products in an inertial electrostatic confinement fusion device for spatial profiling of fusion reactions.
    Donovan DC; Boris DR; Kulcinski GL; Santarius JF; Piefer GR
    Rev Sci Instrum; 2013 Mar; 84(3):033501. PubMed ID: 23556815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental observation of a periodically oscillating plasma sphere in a gridded inertial electrostatic confinement device.
    Park J; Nebel RA; Stange S; Murali SK
    Phys Rev Lett; 2005 Jul; 95(1):015003. PubMed ID: 16090625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The IEC star-mode fusion neutron source for NAA--status and next-step designs.
    Miley GH; Sved J
    Appl Radiat Isot; 2000 Oct; 53(4-5):779-83. PubMed ID: 11003520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characteristics of ions in an inertial electrostatic confinement device.
    Bhattacharjee D; Buzarbaruah N; Mohanty SR; Adhikari S
    Phys Rev E; 2020 Dec; 102(6-1):063205. PubMed ID: 33465992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Doppler spectroscopy in H2 to the prediction of experimental D(d,n)3He reaction rates in an inertial electrostatic confinement device.
    Kipritidis J; Khachan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026403. PubMed ID: 19391851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The materials irradiation experiment for testing plasma facing materials at fusion relevant conditions.
    Garrison LM; Zenobia SJ; Egle BJ; Kulcinski GL; Santarius JF
    Rev Sci Instrum; 2016 Aug; 87(8):083502. PubMed ID: 27587118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutron flux assessment of a neutron irradiation facility based on inertial electrostatic confinement fusion.
    Sztejnberg Gonçalves-Carralves ML; Miller ME
    Appl Radiat Isot; 2015 Dec; 106():95-100. PubMed ID: 26122974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.
    Schmit PF; Knapp PF; Hansen SB; Gomez MR; Hahn KD; Sinars DB; Peterson KJ; Slutz SA; Sefkow AB; Awe TJ; Harding E; Jennings CA; Chandler GA; Cooper GW; Cuneo ME; Geissel M; Harvey-Thompson AJ; Herrmann MC; Hess MH; Johns O; Lamppa DC; Martin MR; McBride RD; Porter JL; Robertson GK; Rochau GA; Rovang DC; Ruiz CL; Savage ME; Smith IC; Stygar WA; Vesey RA
    Phys Rev Lett; 2014 Oct; 113(15):155004. PubMed ID: 25375715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of nuclear fusion driven by a pyroelectric crystal.
    Naranjo B; Gimzewski JK; Putterman S
    Nature; 2005 Apr; 434(7037):1115-7. PubMed ID: 15858570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale kinetic simulations of colliding plasmas within a hohlraum of indirect-drive inertial confinement fusion.
    Liang T; Wu D; Ning X; Shan L; Yuan Z; Cai H; Sheng Z; He X
    Phys Rev E; 2024 Mar; 109(3-2):035207. PubMed ID: 38632725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic approach to the modelling and comparison of the geometries of spherical electrodes in inertial electrostatic confinement fusion devices.
    Wulfkühler JP; Nguyen HD; Peiffer L; Tajmar M
    Sci Rep; 2024 Jan; 14(1):2261. PubMed ID: 38278846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion cyclotron resonance spectroscopy. Cyclotron double resonance provides a new technique for the study of ion-molecule reaction mechanisms.
    Baldeschwieler JD
    Science; 1968 Jan; 159(3812):263-73. PubMed ID: 4863791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An accelerator based fusion-product source for development of inertial confinement fusion nuclear diagnostics.
    McDuffee SC; Frenje JA; Séguin FH; Leiter R; Canavan MJ; Casey DT; Rygg JR; Li CK; Petrasso RD
    Rev Sci Instrum; 2008 Apr; 79(4):043302. PubMed ID: 18447523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Hot-Spot Ignition Designs for Inertial Confinement Fusion with Liquid-Deuterium-Tritium Spheres.
    Goncharov VN; Igumenshchev IV; Harding DR; Morse SFB; Hu SX; Radha PB; Froula DH; Regan SP; Sangster TC; Campbell EM
    Phys Rev Lett; 2020 Aug; 125(6):065001. PubMed ID: 32845678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law.
    Joglekar AS; Thomas AG; Fox W; Bhattacharjee A
    Phys Rev Lett; 2014 Mar; 112(10):105004. PubMed ID: 24679302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutron imaging with an inertial electrostatic confinement fusion neutron source.
    Takakura K; Nittoh K; Miyadera H; Yoshioka K; Karino Y; Hotta E; Hasegawa J
    Appl Opt; 2022 Feb; 61(5):1238-1247. PubMed ID: 35201181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma barodiffusion in inertial-confinement-fusion implosions: application to observed yield anomalies in thermonuclear fuel mixtures.
    Amendt P; Landen OL; Robey HF; Li CK; Petrasso RD
    Phys Rev Lett; 2010 Sep; 105(11):115005. PubMed ID: 20867580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A powerful pulsed "point-like" neutron source based on the high-current ECR ion source.
    Skalyga VA; Golubev SV; Izotov IV; Shaposhnikov RA; Razin SV; Sidorov AV; Bokhanov AF; Kazakov MY; Lapin RL; Vybin SS
    Rev Sci Instrum; 2020 Jan; 91(1):013331. PubMed ID: 32012579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.