These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33736198)

  • 61. Quantification of food loss and waste and its percentage estimation along the food supply chain in Korea.
    Kim H; Park J
    Waste Manag Res; 2023 Oct; 41(10):1529-1538. PubMed ID: 37338144
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Questioning the accuracy of greenhouse gas accounting from agricultural waste: a case study.
    Chung ML; Shilton AN; Guieysse B; Pratt C
    J Environ Qual; 2013; 42(3):654-9. PubMed ID: 23673930
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Impact of Food Waste on Society, Specifically at Retail and Foodservice Levels in Developed and Developing Countries.
    Todd ECD; Faour-Klingbeil D
    Foods; 2024 Jul; 13(13):. PubMed ID: 38998603
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Estimating the magnitude of the food loss and waste generated in Brazil.
    Dal' Magro GP; Talamini E
    Waste Manag Res; 2019 Jul; 37(7):706-716. PubMed ID: 30919744
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly.
    Pang W; Hou D; Chen J; Nowar EE; Li Z; Hu R; Tomberlin JK; Yu Z; Li Q; Wang S
    J Environ Manage; 2020 Apr; 260():110066. PubMed ID: 31941627
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Greenhouse gas emissions as sustainability indicators in agricultural sectors' adaptation to climate change: Policy implications.
    Volenzo TE; Odiyo JO; Obiri J
    Jamba; 2019; 11(1):576. PubMed ID: 31308877
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Land-based climate change mitigation measures can affect agricultural markets and food security.
    Fujimori S; Wu W; Doelman J; Frank S; Hristov J; Kyle P; Sands R; van Zeist WJ; Havlik P; Domínguez IP; Sahoo A; Stehfest E; Tabeau A; Valin H; van Meijl H; Hasegawa T; Takahashi K
    Nat Food; 2022 Feb; 3(2):110-121. PubMed ID: 37117964
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Where is global waste management heading? An analysis of solid waste sector commitments from nationally-determined contributions.
    Powell JT; Chertow MR; Esty DC
    Waste Manag; 2018 Oct; 80():137-143. PubMed ID: 30454993
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The dynamics of grazed woodlands in southwest Queensland, Australia and their effect on greenhouse gas emissions.
    Moore JL; Howden SM; McKeon GM; Carter JO; Scanlan JC
    Environ Int; 2001 Sep; 27(2-3):147-53. PubMed ID: 11697662
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Evaluation of greenhouse gas emissions from waste management approaches in the islands.
    Chen YC
    Waste Manag Res; 2017 Jul; 35(7):691-699. PubMed ID: 28553773
    [TBL] [Abstract][Full Text] [Related]  

  • 71. FAO and the Situation of Food Security and Nutrition in the World.
    Boliko MC
    J Nutr Sci Vitaminol (Tokyo); 2019; 65(Supplement):S4-S8. PubMed ID: 31619643
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimating greenhouse gas emissions of European cities--modeling emissions with only one spatial and one socioeconomic variable.
    Baur AH; Lauf S; Förster M; Kleinschmit B
    Sci Total Environ; 2015 Jul; 520():49-58. PubMed ID: 25794971
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Searching for solutions to mitigate greenhouse gas emissions by agricultural policy decisions--Application of system dynamics modeling for the case of Latvia.
    Dace E; Muizniece I; Blumberga A; Kaczala F
    Sci Total Environ; 2015 Sep; 527-528():80-90. PubMed ID: 25958357
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.].
    Liu BJ; Lu F; Wang XK; Liu WW
    Ying Yong Sheng Tai Xue Bao; 2017 Feb; 28(2):673-688. PubMed ID: 29749178
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Climate change mitigation for agriculture: water quality benefits and costs.
    Wilcock R; Elliott S; Hudson N; Parkyn S; Quinn J
    Water Sci Technol; 2008; 58(11):2093-9. PubMed ID: 19092184
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Climate change and sustainable food production.
    Smith P; Gregory PJ
    Proc Nutr Soc; 2013 Feb; 72(1):21-8. PubMed ID: 23146244
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Environmental sustainability assessment using dynamic Autoregressive-Distributed Lag simulations-Nexus between greenhouse gas emissions, biomass energy, food and economic growth.
    Sarkodie SA; Strezov V; Weldekidan H; Asamoah EF; Owusu PA; Doyi INY
    Sci Total Environ; 2019 Jun; 668():318-332. PubMed ID: 30852209
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.
    Papageorgiou A; Barton JR; Karagiannidis A
    J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The greenhouse emissions footprint of free-range eggs.
    Taylor RC; Omed H; Edwards-Jones G
    Poult Sci; 2014 Jan; 93(1):231-7. PubMed ID: 24570444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.