These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 33736208)
1. The role of carbonate mineral dissolution in turbidity reduction in an oil sands end pit lake. Poon HY; Cossey HL; Balaberda AL; Ulrich AC Chemosphere; 2021 May; 271():129876. PubMed ID: 33736208 [TBL] [Abstract][Full Text] [Related]
2. Initial geochemical characteristics of fluid fine tailings in an oil sands end pit lake. Dompierre KA; Lindsay MB; Cruz-Hernández P; Halferdahl GM Sci Total Environ; 2016 Jun; 556():196-206. PubMed ID: 26974568 [TBL] [Abstract][Full Text] [Related]
3. Biofilms for Turbidity Mitigation in Oil Sands End Pit Lakes. Cossey HL; Anwar MN; Kuznetsov PV; Ulrich AC Microorganisms; 2021 Jul; 9(7):. PubMed ID: 34361879 [TBL] [Abstract][Full Text] [Related]
4. Characterization of physical mass transport through oil sands fluid fine tailings in an end pit lake: a multi-tracer study. Dompierre KA; Barbour SL J Contam Hydrol; 2016 Jun; 189():12-26. PubMed ID: 27061245 [TBL] [Abstract][Full Text] [Related]
5. Chronic Toxicity of Surface Water from a Canadian Oil Sands End Pit Lake to the Freshwater Invertebrates Chironomus dilutus and Ceriodaphnia dubia. White KB; Liber K Arch Environ Contam Toxicol; 2020 Apr; 78(3):439-450. PubMed ID: 32077988 [TBL] [Abstract][Full Text] [Related]
6. Ebullition enhances chemical mass transport across the tailings-water interface of oil sands pit lakes. Francis DJ; Barbour SL; Lindsay MBJ J Contam Hydrol; 2022 Feb; 245():103938. PubMed ID: 34915427 [TBL] [Abstract][Full Text] [Related]
7. Early chemical and toxicological risk characterization of inorganic constituents in surface water from the Canadian oil sands first large-scale end pit lake. White KB; Liber K Chemosphere; 2018 Nov; 211():745-757. PubMed ID: 30099159 [TBL] [Abstract][Full Text] [Related]
8. Microbially-accelerated consolidation of oil sands tailings. Pathway I: changes in porewater chemistry. Siddique T; Kuznetsov P; Kuznetsova A; Arkell N; Young R; Li C; Guigard S; Underwood E; Foght JM Front Microbiol; 2014; 5():106. PubMed ID: 24711805 [TBL] [Abstract][Full Text] [Related]
9. Indigenous microorganisms residing in oil sands tailings biodegrade residual bitumen. Yu X; Lee K; Ma B; Asiedu E; Ulrich AC Chemosphere; 2018 Oct; 209():551-559. PubMed ID: 29945048 [TBL] [Abstract][Full Text] [Related]
10. Seasonal Dynamics of Methanotrophic Bacteria in a Boreal Oil Sands End Pit Lake. Albakistani EA; Nwosu FC; Furgason C; Haupt ES; Smirnova AV; Verbeke TJ; Lee ES; Kim JJ; Chan A; Ruhl IA; Sheremet A; Rudderham SB; Lindsay MBJ; Dunfield PF Appl Environ Microbiol; 2022 Feb; 88(3):e0145521. PubMed ID: 34818104 [TBL] [Abstract][Full Text] [Related]
11. Temporal variations in turbidity in an oil sands pit lake. Tedford E; Halferdahl G; Pieters R; Lawrence GA Environ Fluid Mech (Dordr); 2019; 19(2):457-473. PubMed ID: 31148952 [TBL] [Abstract][Full Text] [Related]
12. Magnesium-rich minerals in sediment and suspended particulates of South Florida water bodies: implications for turbidity. Harris WG; Fisher MM; Cao X; Osborne T; Ellis L J Environ Qual; 2007; 36(6):1670-7. PubMed ID: 17940267 [TBL] [Abstract][Full Text] [Related]
13. Effects of pressure on the biogeochemical and geotechnical behavior of treated oil sands tailings in a pit lake scenario. Cossey HL; Kaminsky HAW; Ulrich AC Chemosphere; 2024 Oct; 365():143395. PubMed ID: 39313078 [TBL] [Abstract][Full Text] [Related]
14. Phytoplankton ecology in the early years of a boreal oil sands end pit lake. Furgason CC; Smirnova AV; Dacks JB; Dunfield PF Environ Microbiome; 2024 Jan; 19(1):3. PubMed ID: 38217061 [TBL] [Abstract][Full Text] [Related]
15. Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake. Slater GF; Goad CA; Lindsay MBJ; Mumford KG; Colenbrander Nelson TE; Brady AL; Jessen GL; Warren LA Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946113 [TBL] [Abstract][Full Text] [Related]
16. Effects of chemical fractions from an oil sands end-pit lake on reproduction of fathead minnows. Morandi G; Wiseman S; Sun C; Martin JW; Giesy JP Chemosphere; 2020 Jun; 249():126073. PubMed ID: 32088464 [TBL] [Abstract][Full Text] [Related]
17. Phylogenetic Estimation of Community Composition and Novel Eukaryotic Lineages in Base Mine Lake: An Oil Sands Tailings Reclamation Site in Northern Alberta. Richardson E; Bass D; Smirnova A; Paoli L; Dunfield P; Dacks JB J Eukaryot Microbiol; 2020 Jan; 67(1):86-99. PubMed ID: 31432582 [TBL] [Abstract][Full Text] [Related]
18. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying. Kuznetsov P; Kuznetsova A; Foght JM; Siddique T Sci Total Environ; 2015 Feb; 505():1-10. PubMed ID: 25306090 [TBL] [Abstract][Full Text] [Related]
19. Total Mercury and Methylmercury in Lake Water of Canada's Oil Sands Region. Emmerton CA; Cooke CA; Wentworth GR; Graydon JA; Ryjkov A; Dastoor A Environ Sci Technol; 2018 Oct; 52(19):10946-10955. PubMed ID: 30229653 [TBL] [Abstract][Full Text] [Related]
20. Interface dissolution kinetics and porosity formation of calcite and dolomite (110) and (104) planes: An implication to the stability of geologic carbon sequestration. Zhu G; Wei Z; Li W; Yang X; Cao S; Wu X; Li Y J Colloid Interface Sci; 2023 Nov; 650(Pt B):1003-1012. PubMed ID: 37459724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]