These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33736295)

  • 1. Synergistic enhancement of nanocellulose foam with dual in situ mineralization and crosslinking reaction.
    Huang C; Zhan Y; Hao X; Wang Z; Li M; Meng X; Fang G; Ragauskas AJ
    Int J Biol Macromol; 2020 Dec; 165(Pt B):3198-3205. PubMed ID: 33736295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix.
    Huang C; Fang G; Zhao Y; Bhagia S; Meng X; Yong Q; Ragauskas AJ
    Carbohydr Polym; 2019 Oct; 222():115036. PubMed ID: 31320076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulose Nanocrystals--Bioactive Glass Hybrid Coating as Bone Substitutes by Electrophoretic Co-deposition: In Situ Control of Mineralization of Bioactive Glass and Enhancement of Osteoblastic Performance.
    Chen Q; Garcia RP; Munoz J; Pérez de Larraya U; Garmendia N; Yao Q; Boccaccini AR
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24715-25. PubMed ID: 26460819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow.
    de Faria AN; Cruz MAE; Ruiz GCM; Zancanela DC; Ciancaglini P; Ramos AP
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2524-2534. PubMed ID: 29314671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydroxyapatite and gelatin composite foams processed via novel freeze-drying and crosslinking for use as temporary hard tissue scaffolds.
    Kim HW; Knowles JC; Kim HE
    J Biomed Mater Res A; 2005 Feb; 72(2):136-45. PubMed ID: 15549783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable poly (lactic acid)/Cellulose nanocrystals (CNCs) composite microcellular foam: Effect of nanofillers on foam cellular morphology, thermal and wettability behavior.
    Borkotoky SS; Dhar P; Katiyar V
    Int J Biol Macromol; 2018 Jan; 106():433-446. PubMed ID: 28797817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic composite scaffold from an
    Huang C; Bhagia S; Hao N; Meng X; Liang L; Yong Q; Ragauskas AJ
    RSC Adv; 2019 Feb; 9(10):5786-5793. PubMed ID: 35515933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of negatively charged cellulose nanofibers on the dispersion of hydroxyapatite nanoparticles for scaffolds in bone tissue engineering.
    Park M; Lee D; Shin S; Hyun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():222-8. PubMed ID: 25910635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering.
    Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y
    Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo.
    Wu M; Wu P; Xiao L; Zhao Y; Yan F; Liu X; Xie Y; Zhang C; Chen Y; Cai L
    Int J Biol Macromol; 2020 Nov; 162():1627-1641. PubMed ID: 32781127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of hydroxyapatite-bacterial nanocellulose scaffold with assist of cellulose nanocrystals.
    Niamsap T; Lam NT; Sukyai P
    Carbohydr Polym; 2019 Feb; 205():159-166. PubMed ID: 30446091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and swelling of cross-linked nanocellulose foams.
    Hossain L; Raghuwanshi VS; Tanner J; Wu CM; Kleinerman O; Cohen Y; Garnier G
    J Colloid Interface Sci; 2020 May; 568():234-244. PubMed ID: 32092552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering.
    Shaheen TI; Montaser AS; Li S
    Int J Biol Macromol; 2019 Jan; 121():814-821. PubMed ID: 30342123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering.
    Katti KS; Katti DR; Dash R
    Biomed Mater; 2008 Sep; 3(3):034122. PubMed ID: 18765898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of osteoblast responses to hydroxyapatite and hydroxyapatite/soluble calcium phosphate composites.
    Ogata K; Imazato S; Ehara A; Ebisu S; Kinomoto Y; Nakano T; Umakoshi Y
    J Biomed Mater Res A; 2005 Feb; 72(2):127-35. PubMed ID: 15625683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ramification of zinc oxide doped hydroxyapatite biocomposites for the mineralization of osteoblasts.
    Gnaneshwar PV; Sudakaran SV; Abisegapriyan S; Sherine J; Ramakrishna S; Rahim MHA; Yusoff MM; Jose R; Venugopal JR
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():337-346. PubMed ID: 30606541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.