BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33736590)

  • 1. AlphaPart-R implementation of the method for partitioning genetic trends.
    Obšteter J; Holl J; Hickey JM; Gorjanc G
    Genet Sel Evol; 2021 Mar; 53(1):30. PubMed ID: 33736590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for partitioning trends in genetic mean and variance to understand breeding practices.
    Oliveira TP; Obšteter J; Pocrnic I; Heslot N; Gorjanc G
    Genet Sel Evol; 2023 Jun; 55(1):36. PubMed ID: 37268883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of field data in pig genomic selection schemes: a simulation study.
    Lillehammer M; Sonesson AK; Meuwissen TH
    Animal; 2016 Jun; 10(6):1025-32. PubMed ID: 26627382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic selection for two traits in a maternal pig breeding scheme.
    Lillehammer M; Meuwissen TH; Sonesson AK
    J Anim Sci; 2013 Jul; 91(7):3079-87. PubMed ID: 23658351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suitability of traits related to aggression and handleability for integration into pig breeding programmes: Genetic parameters and comparison between Gaussian and binary trait specifications.
    König von Borstel U; Tönepöhl B; Appel AK; Voß B; Brandt H; Naderi S; Gauly M
    PLoS One; 2018; 13(12):e0204211. PubMed ID: 30592711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accuracy of breeding values for production traits in turkeys (Meleagris gallopavo) using recursive models with or without genomics.
    Abdalla EA; Wood BJ; Baes CF
    Genet Sel Evol; 2021 Feb; 53(1):16. PubMed ID: 33593272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost-benefit analysis of aquaculture breeding programs.
    Janssen K; Saatkamp H; Komen H
    Genet Sel Evol; 2018 Jan; 50(1):2. PubMed ID: 29378517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BWGS: A R package for genomic selection and its application to a wheat breeding programme.
    Charmet G; Tran LG; Auzanneau J; Rincent R; Bouchet S
    PLoS One; 2020; 15(4):e0222733. PubMed ID: 32240182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic parameters between slaughter pig efficiency and growth rate of different body tissues estimated by computed tomography in live boars of Landrace and Duroc.
    Gjerlaug-Enger E; Kongsro J; Odegård J; Aass L; Vangen O
    Animal; 2012 Jan; 6(1):9-18. PubMed ID: 22436149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of genotype x environment interaction on genetic gain in breeding programs.
    Mulder HA; Bijma P
    J Anim Sci; 2005 Jan; 83(1):49-61. PubMed ID: 15583042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the impact of preselection on subsequent single-step genomic BLUP evaluation of preselected animals.
    Jibrila I; Ten Napel J; Vandenplas J; Veerkamp RF; Calus MPL
    Genet Sel Evol; 2020 Jul; 52(1):42. PubMed ID: 32727349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits.
    Scheper C; Wensch-Dorendorf M; Yin T; Dressel H; Swalve H; König S
    Genet Sel Evol; 2016 Jun; 48(1):50. PubMed ID: 27357942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective advantage of implementing optimal contributions selection and timescales for the convergence of long-term genetic contributions.
    Howard DM; Pong-Wong R; Knap PW; Kremer VD; Woolliams JA
    Genet Sel Evol; 2018 May; 50(1):24. PubMed ID: 29747576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bayesian estimation of direct and correlated responses to selection on linear or ratio expressions of feed efficiency in pigs.
    Shirali M; Varley PF; Jensen J
    Genet Sel Evol; 2018 Jun; 50(1):33. PubMed ID: 29925306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving from QTL experimental results to the utilization of QTL in breeding programmes.
    Spelman RJ; Bovenhuis H
    Anim Genet; 1998 Apr; 29(2):77-84. PubMed ID: 9699266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rindsel: an R package for phenotypic and molecular selection indices used in plant breeding.
    Perez-Elizalde S; Cerón-Rojas JJ; Crossa J; Fleury D; Alvarado G
    Methods Mol Biol; 2014; 1145():87-96. PubMed ID: 24816662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Most of the long-term genetic gain from optimum-contribution selection can be realised with restrictions imposed during optimisation.
    Henryon M; Ostersen T; Ask B; Sørensen AC; Berg P
    Genet Sel Evol; 2015 Mar; 47(1):21. PubMed ID: 25887703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MATICCE: mapping transitions in continuous character evolution.
    Hipp AL; Escudero M
    Bioinformatics; 2010 Jan; 26(1):132-3. PubMed ID: 19880368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic and economic analyses of female replacement rates in the dam-daughter pathway of a hierarchical swine breeding structure.
    Faust MA; Robison OW; Tess MW
    J Anim Sci; 1992 Jul; 70(7):2053-64. PubMed ID: 1644678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.