These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Construction of a high-efficient expression vector of Delta12 fatty acid desaturase in peanut and its prokaryotical expression. Yin D; Cui D; Jia B J Genet Genomics; 2007 Jan; 34(1):81-8. PubMed ID: 17469780 [TBL] [Abstract][Full Text] [Related]
4. Heterologous Expression of PA8FAD9 and Functional Characterization of a Δ9-Fatty Acid Desaturase from a Cold-Tolerant Pseudomonas sp. A8. Garba L; Ali MS; Oslan SN; Rahman RN Mol Biotechnol; 2016 Nov; 58(11):718-728. PubMed ID: 27629791 [TBL] [Abstract][Full Text] [Related]
5. Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Lee KR; In Sohn S; Jung JH; Kim SH; Roh KH; Kim JB; Suh MC; Kim HU Gene; 2013 Dec; 531(2):253-62. PubMed ID: 24029080 [TBL] [Abstract][Full Text] [Related]
6. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Jung JH; Kim H; Go YS; Lee SB; Hur CG; Kim HU; Suh MC Plant Cell Rep; 2011 Oct; 30(10):1881-92. PubMed ID: 21647637 [TBL] [Abstract][Full Text] [Related]
7. Caenorhabditis elegans Delta12-desaturase FAT-2 is a bifunctional desaturase able to desaturate a diverse range of fatty acid substrates at the Delta12 and Delta15 positions. Zhou XR; Green AG; Singh SP J Biol Chem; 2011 Dec; 286(51):43644-43650. PubMed ID: 22041902 [TBL] [Abstract][Full Text] [Related]
8. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790 [TBL] [Abstract][Full Text] [Related]
9. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Peng Q; Hu Y; Wei R; Zhang Y; Guan C; Ruan Y; Liu C Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882 [TBL] [Abstract][Full Text] [Related]
10. Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola. Yilmaz JL; Lim ZL; Beganovic M; Breazeale S; Andre C; Stymne S; Vrinten P; Senger T Lipids; 2017 Mar; 52(3):207-222. PubMed ID: 28197856 [TBL] [Abstract][Full Text] [Related]
11. Cloning and functional analysis of HpFAD2 and HpFAD3 genes encoding Δ12- and Δ15-fatty acid desaturases in Hansenula polymorpha. Sangwallek J; Kaneko Y; Tsukamoto T; Marui M; Sugiyama M; Ono H; Bamba T; Fukusaki E; Harashima S Gene; 2014 Jan; 533(1):110-8. PubMed ID: 24100086 [TBL] [Abstract][Full Text] [Related]
12. Identification of Delta12-fatty acid desaturase from arachidonic acid-producing mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Sakuradani E; Kobayashi M; Ashikari T; Shimizu S Eur J Biochem; 1999 May; 261(3):812-20. PubMed ID: 10215899 [TBL] [Abstract][Full Text] [Related]
13. Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Hu X; Sullivan-Gilbert M; Gupta M; Thompson SA Theor Appl Genet; 2006 Aug; 113(3):497-507. PubMed ID: 16767448 [TBL] [Abstract][Full Text] [Related]
14. New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal delta12-fatty acid desaturases. Domergue F; Spiekermann P; Lerchl J; Beckmann C; Kilian O; Kroth PG; Boland W; Zähringer U; Heinz E Plant Physiol; 2003 Apr; 131(4):1648-60. PubMed ID: 12692324 [TBL] [Abstract][Full Text] [Related]
15. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Huang H; Cui T; Zhang L; Yang Q; Yang Y; Xie K; Fan C; Zhou Y Theor Appl Genet; 2020 Aug; 133(8):2401-2411. PubMed ID: 32448919 [TBL] [Abstract][Full Text] [Related]
16. Δ12-Fatty acid desaturase from Candida parapsilosis is a multifunctional desaturase producing a range of polyunsaturated and hydroxylated fatty acids. Buček A; Matoušková P; Sychrová H; Pichová I; Hrušková-Heidingsfeldová O PLoS One; 2014; 9(3):e93322. PubMed ID: 24681902 [TBL] [Abstract][Full Text] [Related]
17. Two clusters of residues contribute to the activity and substrate specificity of Fm1, a bifunctional oleate and linoleate desaturase of fungal origin. Cai Y; Yu XH; Liu Q; Liu CJ; Shanklin J J Biol Chem; 2018 Dec; 293(51):19844-19853. PubMed ID: 30348899 [TBL] [Abstract][Full Text] [Related]
18. Genome-Wide Survey and Characterization of Fatty Acid Desaturase Gene Family in Brassica napus and Its Parental Species. Xue Y; Chen B; Wang R; Win AN; Li J; Chai Y Appl Biochem Biotechnol; 2018 Feb; 184(2):582-598. PubMed ID: 28799009 [TBL] [Abstract][Full Text] [Related]
19. Molecular Cloning and Functional Expression of a Δ9- Fatty Acid Desaturase from an Antarctic Pseudomonas sp. A3. Garba L; Mohamad Ali MS; Oslan SN; Rahman RN PLoS One; 2016; 11(8):e0160681. PubMed ID: 27494717 [TBL] [Abstract][Full Text] [Related]
20. Identification and expression of a stearoyl-ACP desaturase gene responsible for oleic acid accumulation in Xanthoceras sorbifolia seeds. Zhao N; Zhang Y; Li Q; Li R; Xia X; Qin X; Guo H Plant Physiol Biochem; 2015 Feb; 87():9-16. PubMed ID: 25528221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]