These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
314 related articles for article (PubMed ID: 33737185)
1. TEMPO-oxidized nanocellulose films derived from coconut residues: Physicochemical, mechanical and electrical properties. Hassan SH; Velayutham TS; Chen YW; Lee HV Int J Biol Macromol; 2021 Jun; 180():392-402. PubMed ID: 33737185 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of cellulose nanofibrils from coconut coir fibers and their reinforcements in biodegradable composite films. Wu J; Du X; Yin Z; Xu S; Xu S; Zhang Y Carbohydr Polym; 2019 May; 211():49-56. PubMed ID: 30824103 [TBL] [Abstract][Full Text] [Related]
3. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide. Trovatti E; Tang H; Hajian A; Meng Q; Gandini A; Berglund LA; Zhou Q Carbohydr Polym; 2018 Feb; 181():256-263. PubMed ID: 29253970 [TBL] [Abstract][Full Text] [Related]
4. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Fujisawa S; Ikeuchi T; Takeuchi M; Saito T; Isogai A Biomacromolecules; 2012 Jul; 13(7):2188-94. PubMed ID: 22642863 [TBL] [Abstract][Full Text] [Related]
5. Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Fukuzumi H; Saito T; Iwata T; Kumamoto Y; Isogai A Biomacromolecules; 2009 Jan; 10(1):162-5. PubMed ID: 19055320 [TBL] [Abstract][Full Text] [Related]
7. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites. Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986 [TBL] [Abstract][Full Text] [Related]
8. Algal growth inhibition test with TEMPO-oxidized cellulose nanofibers. Tai R; Ogura I; Okazaki T; Iizumi Y; Mano H NanoImpact; 2024 Apr; 34():100504. PubMed ID: 38537806 [TBL] [Abstract][Full Text] [Related]
9. Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Fukuzumi H; Saito T; Isogai A Carbohydr Polym; 2013 Mar; 93(1):172-7. PubMed ID: 23465916 [TBL] [Abstract][Full Text] [Related]
10. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging. Arun R; Shruthy R; Preetha R; Sreejit V Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882 [TBL] [Abstract][Full Text] [Related]
11. Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. Puangsin B; Yang Q; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():208-13. PubMed ID: 23603078 [TBL] [Abstract][Full Text] [Related]
12. Recyclable nanocomposites of well-dispersed 2D layered silicates in cellulose nanofibril (CNF) matrix. Li L; Maddalena L; Nishiyama Y; Carosio F; Ogawa Y; Berglund LA Carbohydr Polym; 2022 Mar; 279():119004. PubMed ID: 34980351 [TBL] [Abstract][Full Text] [Related]
13. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole. Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283 [TBL] [Abstract][Full Text] [Related]
14. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Soni B; Hassan EB; Schilling MW; Mahmoud B Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625 [TBL] [Abstract][Full Text] [Related]
15. Swelling and Free-Volume Characteristics of TEMPO-Oxidized Cellulose Nanofibril Films. Torstensen JØ; Liu M; Jin SA; Deng L; Hawari AI; Syverud K; Spontak RJ; Gregersen ØW Biomacromolecules; 2018 Mar; 19(3):1016-1025. PubMed ID: 29420013 [TBL] [Abstract][Full Text] [Related]
16. TEMPO-oxidized cellulose nanofibril film from nano-structured bacterial cellulose derived from the recently developed thermotolerant Komagataeibacter xylinus C30 and Komagataeibacter oboediens R37-9 strains. Chitbanyong K; Pisutpiched S; Khantayanuwong S; Theeragool G; Puangsin B Int J Biol Macromol; 2020 Nov; 163():1908-1914. PubMed ID: 32976905 [TBL] [Abstract][Full Text] [Related]
17. Biodegradable cellulose I (II) nanofibrils/poly(vinyl alcohol) composite films with high mechanical properties, improved thermal stability and excellent transparency. Xing L; Hu C; Zhang W; Guan L; Gu J Int J Biol Macromol; 2020 Dec; 164():1766-1775. PubMed ID: 32763405 [TBL] [Abstract][Full Text] [Related]
18. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites. Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644 [TBL] [Abstract][Full Text] [Related]
19. Effect of the oxidation treatment on the production of cellulose nanofiber suspensions from Posidonia oceanica: The rheological aspect. Bettaieb F; Nechyporchuk O; Khiari R; Mhenni MF; Dufresne A; Belgacem MN Carbohydr Polym; 2015 Dec; 134():664-72. PubMed ID: 26428170 [TBL] [Abstract][Full Text] [Related]
20. Preparation and characterization of TEMPO-oxidized cellulose nanofibrils with ammonium carboxylate groups. Shimizu M; Fukuzumi H; Saito T; Isogai A Int J Biol Macromol; 2013 Aug; 59():99-104. PubMed ID: 23597708 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]