These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33737396)

  • 1. The effective graph reveals redundancy, canalization, and control pathways in biochemical regulation and signaling.
    Gates AJ; Brattig Correia R; Wang X; Rocha LM
    Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33737396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CANA: A Python Package for Quantifying Control and Canalization in Boolean Networks.
    Correia RB; Gates AJ; Wang X; Rocha LM
    Front Physiol; 2018; 9():1046. PubMed ID: 30154728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effective connectivity determines the critical dynamics of biochemical networks.
    Manicka S; Marques-Pita M; Rocha LM
    J R Soc Interface; 2022 Jan; 19(186):20210659. PubMed ID: 35042384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into the organization of biochemical regulatory networks using graph theory analyses.
    Ma'ayan A
    J Biol Chem; 2009 Feb; 284(9):5451-5. PubMed ID: 18940806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective Connectivity and Bias Entropy Improve Prediction of Dynamical Regime in Automata Networks.
    Costa FX; Rozum JC; Marcus AM; Rocha LM
    Entropy (Basel); 2023 Feb; 25(2):. PubMed ID: 36832740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HRGRN: A Graph Search-Empowered Integrative Database of Arabidopsis Signaling Transduction, Metabolism and Gene Regulation Networks.
    Dai X; Li J; Liu T; Zhao PX
    Plant Cell Physiol; 2016 Jan; 57(1):e12. PubMed ID: 26657893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Canalization reduces the nonlinearity of regulation in biological networks.
    Kadelka C; Murrugarra D
    NPJ Syst Biol Appl; 2024 Jun; 10(1):67. PubMed ID: 38871768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulatory patterns in molecular interaction networks.
    Murrugarra D; Laubenbacher R
    J Theor Biol; 2011 Nov; 288():66-72. PubMed ID: 21872607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STON: exploring biological pathways using the SBGN standard and graph databases.
    Touré V; Mazein A; Waltemath D; Balaur I; Saqi M; Henkel R; Pellet J; Auffray C
    BMC Bioinformatics; 2016 Dec; 17(1):494. PubMed ID: 27919219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boolean network models of cellular regulation: prospects and limitations.
    Bornholdt S
    J R Soc Interface; 2008 Aug; 5 Suppl 1(Suppl 1):S85-94. PubMed ID: 18508746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Causal network inference using biochemical kinetics.
    Oates CJ; Dondelinger F; Bayani N; Korkola J; Gray JW; Mukherjee S
    Bioinformatics; 2014 Sep; 30(17):i468-74. PubMed ID: 25161235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A methodology for the structural and functional analysis of signaling and regulatory networks.
    Klamt S; Saez-Rodriguez J; Lindquist JA; Simeoni L; Gilles ED
    BMC Bioinformatics; 2006 Feb; 7():56. PubMed ID: 16464248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graph Curvature for Differentiating Cancer Networks.
    Sandhu R; Georgiou T; Reznik E; Zhu L; Kolesov I; Senbabaoglu Y; Tannenbaum A
    Sci Rep; 2015 Jul; 5():12323. PubMed ID: 26169480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational framework for a Lyapunov-enabled analysis of biochemical reaction networks.
    Ali Al-Radhawi M; Angeli D; Sontag ED
    PLoS Comput Biol; 2020 Feb; 16(2):e1007681. PubMed ID: 32092050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards perturbation prediction of biological networks using deep learning.
    Li D; Gao J
    Sci Rep; 2019 Aug; 9(1):11941. PubMed ID: 31420588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrating Bayesian variable selection with Modular Response Analysis to infer biochemical network topology.
    Santra T; Kolch W; Kholodenko BN
    BMC Syst Biol; 2013 Jul; 7():57. PubMed ID: 23829771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elementary signaling modes predict the essentiality of signal transduction network components.
    Wang RS; Albert R
    BMC Syst Biol; 2011 Mar; 5():44. PubMed ID: 21426566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial molecular networks: bridging the gap between functional genomics and dynamical modelling.
    van Helden J; Toussaint A; Thieffry D
    Methods Mol Biol; 2012; 804():1-11. PubMed ID: 22144145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.