These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 33737707)
1. The effects of myelin on macrophage activation are phenotypic specific via cPLA Kopper TJ; Zhang B; Bailey WM; Bethel KE; Gensel JC Sci Rep; 2021 Mar; 11(1):6341. PubMed ID: 33737707 [TBL] [Abstract][Full Text] [Related]
2. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Wang X; Cao K; Sun X; Chen Y; Duan Z; Sun L; Guo L; Bai P; Sun D; Fan J; He X; Young W; Ren Y Glia; 2015 Apr; 63(4):635-51. PubMed ID: 25452166 [TBL] [Abstract][Full Text] [Related]
3. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Guo L; Rolfe AJ; Wang X; Tai W; Cheng Z; Cao K; Chen X; Xu Y; Sun D; Li J; He X; Young W; Fan J; Ren Y Mol Brain; 2016 May; 9(1):48. PubMed ID: 27153974 [TBL] [Abstract][Full Text] [Related]
4. Myelin and non-myelin debris contribute to foamy macrophage formation after spinal cord injury. Ryan CB; Choi JS; Al-Ali H; Lee JK Neurobiol Dis; 2022 Feb; 163():105608. PubMed ID: 34979258 [TBL] [Abstract][Full Text] [Related]
5. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. Kopper TJ; Gensel JC J Neurosci Res; 2018 Jun; 96(6):969-977. PubMed ID: 28696010 [TBL] [Abstract][Full Text] [Related]
6. Delayed accumulation of activated macrophages and inhibition of remyelination after spinal cord injury in an adult rodent model. Imai M; Watanabe M; Suyama K; Osada T; Sakai D; Kawada H; Matsumae M; Mochida J J Neurosurg Spine; 2008 Jan; 8(1):58-66. PubMed ID: 18173348 [TBL] [Abstract][Full Text] [Related]
7. Activating Adiponectin Signaling with Exogenous AdipoRon Reduces Myelin Lipid Accumulation and Suppresses Macrophage Recruitment after Spinal Cord Injury. Zhou Q; Xiang H; Li A; Lin W; Huang Z; Guo J; Wang P; Chi Y; Xiang K; Xu Y; Zhou L; So KF; Chen X; Sun X; Ren Y J Neurotrauma; 2019 Mar; 36(6):903-918. PubMed ID: 30221582 [TBL] [Abstract][Full Text] [Related]
8. Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. Ghosh M; Xu Y; Pearse DD J Neuroinflammation; 2016 Jan; 13():9. PubMed ID: 26757726 [TBL] [Abstract][Full Text] [Related]
9. Local delivery of AdipoRon from self-assembled microparticles to inhibit myelin lipid uptake and to promote lipid efflux from rat macrophages. Shultz RB; Hai N; Zhong Y J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38359460 [No Abstract] [Full Text] [Related]
11. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Chuang DY; Simonyi A; Kotzbauer PT; Gu Z; Sun GY J Neuroinflammation; 2015 Oct; 12():199. PubMed ID: 26520095 [TBL] [Abstract][Full Text] [Related]
12. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Kroner A; Greenhalgh AD; Zarruk JG; Passos Dos Santos R; Gaestel M; David S Neuron; 2014 Sep; 83(5):1098-116. PubMed ID: 25132469 [TBL] [Abstract][Full Text] [Related]
13. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Ma SF; Chen YJ; Zhang JX; Shen L; Wang R; Zhou JS; Hu JG; Lü HZ Brain Behav Immun; 2015 Mar; 45():157-70. PubMed ID: 25476600 [TBL] [Abstract][Full Text] [Related]
14. Schwann Cell Transplantation Subdues the Pro-Inflammatory Innate Immune Cell Response after Spinal Cord Injury. Pearse DD; Bastidas J; Izabel SS; Ghosh M Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30154346 [TBL] [Abstract][Full Text] [Related]
15. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. Guerrero AR; Uchida K; Nakajima H; Watanabe S; Nakamura M; Johnson WE; Baba H J Neuroinflammation; 2012 Feb; 9():40. PubMed ID: 22369693 [TBL] [Abstract][Full Text] [Related]
16. Age decreases macrophage IL-10 expression: Implications for functional recovery and tissue repair in spinal cord injury. Zhang B; Bailey WM; Braun KJ; Gensel JC Exp Neurol; 2015 Nov; 273():83-91. PubMed ID: 26263843 [TBL] [Abstract][Full Text] [Related]
17. cPLA2 activation contributes to lysosomal defects leading to impairment of autophagy after spinal cord injury. Li Y; Jones JW; M C Choi H; Sarkar C; Kane MA; Koh EY; Lipinski MM; Wu J Cell Death Dis; 2019 Jul; 10(7):531. PubMed ID: 31296844 [TBL] [Abstract][Full Text] [Related]
18. Cytosolic phospholipase A2 protein as a novel therapeutic target for spinal cord injury. Liu NK; Deng LX; Zhang YP; Lu QB; Wang XF; Hu JG; Oakes E; Bonventre JV; Shields CB; Xu XM Ann Neurol; 2014 May; 75(5):644-58. PubMed ID: 24623140 [TBL] [Abstract][Full Text] [Related]
19. NADPH oxidase isoform expression is temporally regulated and may contribute to microglial/macrophage polarization after spinal cord injury. Bermudez S; Khayrullina G; Zhao Y; Byrnes KR Mol Cell Neurosci; 2016 Dec; 77():53-64. PubMed ID: 27729244 [TBL] [Abstract][Full Text] [Related]
20. Reducing age-dependent monocyte-derived macrophage activation contributes to the therapeutic efficacy of NADPH oxidase inhibition in spinal cord injury. Zhang B; Bailey WM; McVicar AL; Stewart AN; Veldhorst AK; Gensel JC Brain Behav Immun; 2019 Feb; 76():139-150. PubMed ID: 30453022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]