These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33737724)

  • 1. Energy-efficient Mott activation neuron for full-hardware implementation of neural networks.
    Oh S; Shi Y; Del Valle J; Salev P; Lu Y; Huang Z; Kalcheim Y; Schuller IK; Kuzum D
    Nat Nanotechnol; 2021 Jun; 16(6):680-687. PubMed ID: 33737724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Memristor crossbar-based neuromorphic computing system: a case study.
    Hu M; Li H; Chen Y; Wu Q; Rose GS; Linderman RW
    IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1864-78. PubMed ID: 25291739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Low-Power Spiking Neural Network Chip Based on a Compact LIF Neuron and Binary Exponential Charge Injector Synapse Circuits.
    Asghar MS; Arslan S; Kim H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34210045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing Vanishing Gradient Problem of Hardware Neuromorphic System by Implementing Imidazole-Based Memristive ReLU Activation Neuron.
    Oh J; Kim S; Lee C; Cha JH; Yang SY; Im SG; Park C; Jang BC; Choi SY
    Adv Mater; 2023 Jun; 35(24):e2300023. PubMed ID: 36938884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wafer-Scale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energy-Efficient Neural Network Hardware.
    Li S; Pam ME; Li Y; Chen L; Chien YC; Fong X; Chi D; Ang KW
    Adv Mater; 2022 Jun; 34(25):e2103376. PubMed ID: 34510567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully hardware-implemented memristor convolutional neural network.
    Yao P; Wu H; Gao B; Tang J; Zhang Q; Zhang W; Yang JJ; Qian H
    Nature; 2020 Jan; 577(7792):641-646. PubMed ID: 31996818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroinspired unsupervised learning and pruning with subquantum CBRAM arrays.
    Shi Y; Nguyen L; Oh S; Liu X; Koushan F; Jameson JR; Kuzum D
    Nat Commun; 2018 Dec; 9(1):5312. PubMed ID: 30552329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RRAM-based synapse devices for neuromorphic systems.
    Moon K; Lim S; Park J; Sung C; Oh S; Woo J; Lee J; Hwang H
    Faraday Discuss; 2019 Feb; 213(0):421-451. PubMed ID: 30426118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An adaptive threshold neuron for recurrent spiking neural networks with nanodevice hardware implementation.
    Shaban A; Bezugam SS; Suri M
    Nat Commun; 2021 Jul; 12(1):4234. PubMed ID: 34244491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memristive crossbar arrays for brain-inspired computing.
    Xia Q; Yang JJ
    Nat Mater; 2019 Apr; 18(4):309-323. PubMed ID: 30894760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient digital design of the nonlinear behavior of Hindmarsh-Rose neuron model in large-scale neural population.
    Nazari S; Jamshidi S
    Sci Rep; 2024 Feb; 14(1):3833. PubMed ID: 38360852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromorphic hardware databases for exploring structure-function relationships in the brain.
    Breslin C; O'Lenskie A
    Philos Trans R Soc Lond B Biol Sci; 2001 Aug; 356(1412):1249-58. PubMed ID: 11545701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductive-bridging random-access memories for emerging neuromorphic computing.
    Cha JH; Yang SY; Oh J; Choi S; Park S; Jang BC; Ahn W; Choi SY
    Nanoscale; 2020 Jul; 12(27):14339-14368. PubMed ID: 32373884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed-Precision Deep Learning Based on Computational Memory.
    Nandakumar SR; Le Gallo M; Piveteau C; Joshi V; Mariani G; Boybat I; Karunaratne G; Khaddam-Aljameh R; Egger U; Petropoulos A; Antonakopoulos T; Rajendran B; Sebastian A; Eleftheriou E
    Front Neurosci; 2020; 14():406. PubMed ID: 32477047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotating neurons for all-analog implementation of cyclic reservoir computing.
    Liang X; Zhong Y; Tang J; Liu Z; Yao P; Sun K; Zhang Q; Gao B; Heidari H; Qian H; Wu H
    Nat Commun; 2022 Mar; 13(1):1549. PubMed ID: 35322037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial spiking afferent nerve based on Mott memristors for neurorobotics.
    Zhang X; Zhuo Y; Luo Q; Wu Z; Midya R; Wang Z; Song W; Wang R; Upadhyay NK; Fang Y; Kiani F; Rao M; Yang Y; Xia Q; Liu Q; Liu M; Yang JJ
    Nat Commun; 2020 Jan; 11(1):51. PubMed ID: 31896758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spin device-based image edge detection architecture for neuromorphic computing.
    Verma G; Soni S; Kaushik BK
    Nanotechnology; 2023 Nov; 35(5):. PubMed ID: 37797609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.