BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

533 related articles for article (PubMed ID: 33737930)

  • 41. Transcriptional profiling of melanocytes from patients with vitiligo vulgaris.
    Strömberg S; Björklund MG; Asplund A; Rimini R; Lundeberg J; Nilsson P; Pontén F; Olsson MJ
    Pigment Cell Melanoma Res; 2008 Apr; 21(2):162-71. PubMed ID: 18426409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. New insights into immune mechanisms of vitiligo.
    Boniface K; Taïeb A; Seneschal J
    G Ital Dermatol Venereol; 2016 Feb; 151(1):44-54. PubMed ID: 26512930
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris.
    Kotobuki Y; Tanemura A; Yang L; Itoi S; Wataya-Kaneda M; Murota H; Fujimoto M; Serada S; Naka T; Katayama I
    Pigment Cell Melanoma Res; 2012 Mar; 25(2):219-30. PubMed ID: 22136309
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The genetics of vitiligo.
    Spritz RA
    J Invest Dermatol; 2011 Nov; 131(E1):E18-20. PubMed ID: 22094401
    [No Abstract]   [Full Text] [Related]  

  • 45. Neurogenic dysregulation, oxidative stress, autoimmunity, and melanocytorrhagy in vitiligo: can they be interconnected?
    Namazi MR
    Pigment Cell Res; 2007 Oct; 20(5):360-3. PubMed ID: 17850509
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model.
    Faas L; Venkatasamy R; Hider RC; Young AR; Soumyanath A
    Br J Dermatol; 2008 May; 158(5):941-50. PubMed ID: 18284389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Autoimmune destruction of skin melanocytes by perilesional T cells from vitiligo patients.
    van den Boorn JG; Konijnenberg D; Dellemijn TA; van der Veen JP; Bos JD; Melief CJ; Vyth-Dreese FA; Luiten RM
    J Invest Dermatol; 2009 Sep; 129(9):2220-32. PubMed ID: 19242513
    [TBL] [Abstract][Full Text] [Related]  

  • 48. RNA-seq Reveals Dysregulation of Novel Melanocyte Genes upon Oxidative Stress: Implications in Vitiligo Pathogenesis.
    Sastry KS; Naeem H; Mokrab Y; Chouchane AI
    Oxid Med Cell Longev; 2019; 2019():2841814. PubMed ID: 31871544
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitiligo: what's new in the psycho-neuro-endocrine-immune connection and related treatments.
    Lotti T; Zanardelli M; D'Erme AM
    Wien Med Wochenschr; 2014 Jul; 164(13-14):278-85. PubMed ID: 25059737
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vitiligo: Translational research and effective therapeutic strategies.
    Thakur V; Bishnoi A; Vinay K; Kumaran SM; Parsad D
    Pigment Cell Melanoma Res; 2021 Jul; 34(4):814-826. PubMed ID: 33756039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vitiligo.
    Picardo M; Dell'Anna ML; Ezzedine K; Hamzavi I; Harris JE; Parsad D; Taieb A
    Nat Rev Dis Primers; 2015 Jun; 1():15011. PubMed ID: 27189851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo.
    Harris JE
    Immunol Rev; 2016 Jan; 269(1):11-25. PubMed ID: 26683142
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Oxidative Stress-Induced Chemokine Production Mediates CD8(+) T Cell Skin Trafficking in Vitiligo.
    Li S; Zhu G; Yang Y; Guo S; Dai W; Wang G; Gao T; Li C
    J Investig Dermatol Symp Proc; 2015 Jul; 17(1):32-3. PubMed ID: 26067315
    [No Abstract]   [Full Text] [Related]  

  • 54. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo.
    Lin X; Meng X; Song Z; Lin J
    Arch Biochem Biophys; 2020 Dec; 696():108670. PubMed ID: 33186606
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Vitiligo, from Pathogenesis to Therapeutic Advances: State of the Art.
    Diotallevi F; Gioacchini H; De Simoni E; Marani A; Candelora M; Paolinelli M; Molinelli E; Offidani A; Simonetti O
    Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902341
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Possible roles of B lymphocyte activating factor of the tumour necrosis factor family in vitiligo autoimmunity.
    Lin X; Tian H; Xianmin M
    Med Hypotheses; 2011 Mar; 76(3):339-42. PubMed ID: 21075543
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vitiligo: pathomechanisms and genetic polymorphism of susceptible genes.
    Shajil EM; Chatterjee S; Agrawal D; Bagchi T; Begum R
    Indian J Exp Biol; 2006 Jul; 44(7):526-39. PubMed ID: 16872041
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway.
    Ma J; Li S; Zhu L; Guo S; Yi X; Cui T; He Y; Chang Y; Liu B; Li C; Jian Z
    Free Radic Biol Med; 2018 Dec; 129():492-503. PubMed ID: 30342186
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Vitiligo--part 1.
    Tarlé RG; Nascimento LM; Mira MT; Castro CC
    An Bras Dermatol; 2014; 89(3):461-70. PubMed ID: 24937821
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vitiligo pathogenesis: autoimmune disease, genetic defect, excessive reactive oxygen species, calcium imbalance, or what else?
    Schallreuter KU; Bahadoran P; Picardo M; Slominski A; Elassiuty YE; Kemp EH; Giachino C; Liu JB; Luiten RM; Lambe T; Le Poole IC; Dammak I; Onay H; Zmijewski MA; Dell'Anna ML; Zeegers MP; Cornall RJ; Paus R; Ortonne JP; Westerhof W
    Exp Dermatol; 2008 Feb; 17(2):139-40; discussion 141-60. PubMed ID: 18205713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.