These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33737945)

  • 1. Radical Coupling Reactions of Hydroxystilbene Glucosides and Coniferyl Alcohol: A Density Functional Theory Study.
    Elder T; Rencoret J; Del Río JC; Kim H; Ralph J
    Front Plant Sci; 2021; 12():642848. PubMed ID: 33737945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radical coupling reactions of piceatannol and monolignols: A density functional theory study.
    Elder T; Carlos Del Río J; Ralph J; Rencoret J; Kim H; Beckham GT
    Phytochemistry; 2019 Aug; 164():12-23. PubMed ID: 31060026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxystilbene Glucosides Are Incorporated into Norway Spruce Bark Lignin.
    Rencoret J; Neiva D; Marques G; Gutiérrez A; Kim H; Gominho J; Pereira H; Ralph J; Del Río JC
    Plant Physiol; 2019 Jul; 180(3):1310-1321. PubMed ID: 31023874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory study on the coupling and reactions of diferuloylputrescine as a lignin monomer.
    Elder T; Del Río JC; Ralph J; Rencoret J; Kim H
    Phytochemistry; 2022 May; 197():113122. PubMed ID: 35131641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula).
    Marjamaa K; Kukkola E; Lundell T; Karhunen P; Saranpää P; Fagerstedt KV
    Tree Physiol; 2006 May; 26(5):605-11. PubMed ID: 16452074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling and Reactions of 5-Hydroxyconiferyl Alcohol in Lignin Formation.
    Elder T; Berstis L; Beckham GT; Crowley MF
    J Agric Food Chem; 2016 Jun; 64(23):4742-50. PubMed ID: 27236926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of basic p-coumaryl and coniferyl alcohol oxidizing peroxidases from a lignin-forming Picea abies suspension culture.
    Koutaniemi S; Toikka MM; Kärkönen A; Mustonen M; Lundell T; Simola LK; Kilpeläinen IA; Teeri TH
    Plant Mol Biol; 2005 May; 58(2):141-57. PubMed ID: 16027971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A polymer of caffeyl alcohol in plant seeds.
    Chen F; Tobimatsu Y; Havkin-Frenkel D; Dixon RA; Ralph J
    Proc Natl Acad Sci U S A; 2012 Jan; 109(5):1772-7. PubMed ID: 22307645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic oxidative copolymerization of hydroxystilbenes and monolignols.
    Kim H; Rencoret J; Elder TJ; Del Río JC; Ralph J
    Sci Adv; 2023 Mar; 9(10):eade5519. PubMed ID: 36888720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignins and ferulate-coniferyl alcohol cross-coupling products in cereal grains.
    Bunzel M; Ralph J; Lu F; Hatfield RD; Steinhart H
    J Agric Food Chem; 2004 Oct; 52(21):6496-502. PubMed ID: 15479013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of potential reaction mechanisms leading to the formation of coniferyl alcohol α-linkages in lignin: a density functional theory study.
    Watts HD; Mohamed MN; Kubicki JD
    Phys Chem Chem Phys; 2011 Dec; 13(47):20974-85. PubMed ID: 22009017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peroxidases Bound to the Growing Lignin Polymer Produce Natural Like Extracellular Lignin in a Cell Culture of Norway Spruce.
    Warinowski T; Koutaniemi S; Kärkönen A; Sundberg I; Toikka M; Simola LK; Kilpeläinen I; Teeri TH
    Front Plant Sci; 2016; 7():1523. PubMed ID: 27803704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of weak interactions in lignin polymerization.
    Sánchez-González Á; Martín-Martínez FJ; Dobado JA
    J Mol Model; 2017 Mar; 23(3):80. PubMed ID: 28210878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norway spruce (Picea abies) laccases: characterization of a laccase in a lignin-forming tissue culture.
    Koutaniemi S; Malmberg HA; Simola LK; Teeri TH; Kärkönen A
    J Integr Plant Biol; 2015 Apr; 57(4):341-8. PubMed ID: 25626739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxystilbenes Are Monomers in Palm Fruit Endocarp Lignins.
    Carlos Del Río J; Rencoret J; Gutiérrez A; Kim H; Ralph J
    Plant Physiol; 2017 Aug; 174(4):2072-2082. PubMed ID: 28588115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AtABCG29 is a monolignol transporter involved in lignin biosynthesis.
    Alejandro S; Lee Y; Tohge T; Sudre D; Osorio S; Park J; Bovet L; Lee Y; Geldner N; Fernie AR; Martinoia E
    Curr Biol; 2012 Jul; 22(13):1207-12. PubMed ID: 22704988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed-ozonolysis assisted oxidative treatment of forestry biomass for lignin fractionation.
    Osorio-González CS; Hegde K; Brar SK; Vezina P; Gilbert D; Avalos-Ramírez A
    Bioresour Technol; 2020 Oct; 313():123638. PubMed ID: 32534757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tricin, a flavonoid monomer in monocot lignification.
    Lan W; Lu F; Regner M; Zhu Y; Rencoret J; Ralph SA; Zakai UI; Morreel K; Boerjan W; Ralph J
    Plant Physiol; 2015 Apr; 167(4):1284-95. PubMed ID: 25667313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin biosynthesis and its integration into metabolism.
    Vanholme R; De Meester B; Ralph J; Boerjan W
    Curr Opin Biotechnol; 2019 Apr; 56():230-239. PubMed ID: 30913460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.