BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 33738082)

  • 1. Extracellular vesicles from recombinant cell factories improve the activity and efficacy of enzymes defective in lysosomal storage disorders.
    Seras-Franzoso J; Díaz-Riascos ZV; Corchero JL; González P; García-Aranda N; Mandaña M; Riera R; Boullosa A; Mancilla S; Grayston A; Moltó-Abad M; Garcia-Fruitós E; Mendoza R; Pintos-Morell G; Albertazzi L; Rosell A; Casas J; Villaverde A; Schwartz S; Abasolo I
    J Extracell Vesicles; 2021 Mar; 10(5):e12058. PubMed ID: 33738082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer.
    Ziegler RJ; Yew NS; Li C; Cherry M; Berthelette P; Romanczuk H; Ioannou YA; Zeidner KM; Desnick RJ; Cheng SH
    Hum Gene Ther; 1999 Jul; 10(10):1667-82. PubMed ID: 10428212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme replacement therapy partially prevents invariant Natural Killer T cell deficiency in the Fabry disease mouse model.
    Macedo MF; Quinta R; Pereira CS; Sa Miranda MC
    Mol Genet Metab; 2012 May; 106(1):83-91. PubMed ID: 22425450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic mRNA Therapy for the Treatment of Fabry Disease: Preclinical Studies in Wild-Type Mice, Fabry Mouse Model, and Wild-Type Non-human Primates.
    Zhu X; Yin L; Theisen M; Zhuo J; Siddiqui S; Levy B; Presnyak V; Frassetto A; Milton J; Salerno T; Benenato KE; Milano J; Lynn A; Sabnis S; Burke K; Besin G; Lukacs CM; Guey LT; Finn PF; Martini PGV
    Am J Hum Genet; 2019 Apr; 104(4):625-637. PubMed ID: 30879639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Globotriaosylceramide induces lysosomal degradation of endothelial KCa3.1 in fabry disease.
    Choi S; Kim JA; Na HY; Cho SE; Park S; Jung SC; Suh SH
    Arterioscler Thromb Vasc Biol; 2014 Jan; 34(1):81-9. PubMed ID: 24158513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of a modified alpha-N-acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease.
    Tajima Y; Kawashima I; Tsukimura T; Sugawara K; Kuroda M; Suzuki T; Togawa T; Chiba Y; Jigami Y; Ohno K; Fukushige T; Kanekura T; Itoh K; Ohashi T; Sakuraba H
    Am J Hum Genet; 2009 Nov; 85(5):569-80. PubMed ID: 19853240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotechnology-based approaches for treating lysosomal storage disorders, a focus on Fabry disease.
    Abasolo I; Seras-Franzoso J; Moltó-Abad M; Díaz-Riascos V; Corchero JL; Pintos-Morell G; Schwartz S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 May; 13(3):e1684. PubMed ID: 33314628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathogenesis and Molecular Mechanisms of Anderson-Fabry Disease and Possible New Molecular Addressed Therapeutic Strategies.
    Tuttolomondo A; Simonetta I; Riolo R; Todaro F; Di Chiara T; Miceli S; Pinto A
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distributions of Globotriaosylceramide Isoforms, and Globotriaosylsphingosine and Its Analogues in an α-Galactosidase A Knockout Mouse, a Model of Fabry Disease.
    Sueoka H; Aoki M; Tsukimura T; Togawa T; Sakuraba H
    PLoS One; 2015; 10(12):e0144958. PubMed ID: 26661087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell Transplantation Combined with Recombinant Collagen Peptides for the Treatment of Fabry Disease.
    Kami D; Yamanami M; Tsukimura T; Maeda H; Togawa T; Sakuraba H; Gojo S
    Cell Transplant; 2020; 29():963689720976362. PubMed ID: 33300391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of Neutralizing Anti-drug Antibody Formation and Clinical Relevance on Therapeutic Efficacy of Enzyme Replacement Therapies in Fabry Disease.
    Lenders M; Brand E
    Drugs; 2021 Nov; 81(17):1969-1981. PubMed ID: 34748189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracerebroventricular dosing of N-sulfoglucosamine sulfohydrolase in mucopolysaccharidosis IIIA mice reduces markers of brain lysosomal dysfunction.
    Magat J; Jones S; Baridon B; Agrawal V; Wong H; Giaramita A; Mangini L; Handyside B; Vitelli C; Parker M; Yeung N; Zhou Y; Pungor E; Slabodkin I; Gorostiza O; Aguilera A; Lo MJ; Alcozie S; Christianson TM; Tiger PMN; Vincelette J; Fong S; Gil G; Hague C; Lawrence R; Wendt DJ; Lebowitz JH; Bunting S; Bullens S; Crawford BE; Roy SM; Woloszynek JC
    J Biol Chem; 2022 Dec; 298(12):102625. PubMed ID: 36306823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer.
    Park J; Murray GJ; Limaye A; Quirk JM; Gelderman MP; Brady RO; Qasba P
    Proc Natl Acad Sci U S A; 2003 Mar; 100(6):3450-4. PubMed ID: 12624185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer.
    Choi JO; Lee MH; Park HY; Jung SC
    J Biomed Sci; 2010 Apr; 17(1):26. PubMed ID: 20398385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential involvement of COX1 and COX2 in the vasculopathy associated with the alpha-galactosidase A-knockout mouse.
    Park JL; Shu L; Shayman JA
    Am J Physiol Heart Circ Physiol; 2009 Apr; 296(4):H1133-40. PubMed ID: 19202000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polylysine-polyhistidine fusion peptide for lysosome-targeted protein delivery.
    Iwasaki T; Murakami N; Kawano T
    Biochem Biophys Res Commun; 2020 Dec; 533(4):905-912. PubMed ID: 33008588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absence of α-galactosidase cross-correction in Fabry heterozygote cultured skin fibroblasts.
    Fuller M; Mellett N; Hein LK; Brooks DA; Meikle PJ
    Mol Genet Metab; 2015 Feb; 114(2):268-73. PubMed ID: 25468650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum requirement of donor cells to reduce the glycolipid storage following bone marrow transplantation in a murine model of Fabry disease.
    Yokoi T; Kobayashi H; Shimada Y; Eto Y; Ishige N; Kitagawa T; Otsu M; Nakauchi H; Ida H; Ohashi T
    J Gene Med; 2011 May; 13(5):262-8. PubMed ID: 21520359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Galactosidase A expressed in the salivary glands partially corrects organ biochemical deficits in the fabry mouse through endocrine trafficking.
    Passineau MJ; Fahrenholz T; Machen L; Zourelias L; Nega K; Paul R; MacDougall MJ; Mamaeva O; Steet R; Barnes J; Kingston HM; Benza RL
    Hum Gene Ther; 2011 Mar; 22(3):293-301. PubMed ID: 20858137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mannose receptor-mediated delivery of moss-made α-galactosidase A efficiently corrects enzyme deficiency in Fabry mice.
    Shen JS; Busch A; Day TS; Meng XL; Yu CI; Dabrowska-Schlepp P; Fode B; Niederkrüger H; Forni S; Chen S; Schiffmann R; Frischmuth T; Schaaf A
    J Inherit Metab Dis; 2016 Mar; 39(2):293-303. PubMed ID: 26310963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.