BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33738121)

  • 1. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair.
    Chen Y; Huang J; Liu J; Wei Y; Yang X; Lei L; Chen L; Wu Y; Gou Z
    Regen Biomater; 2021 Mar; 8(2):rbab007. PubMed ID: 33738121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight into biodegradable macropore filler on tuning mechanical properties and bone tissue ingrowth in sparingly dissolvable bioceramic scaffolds.
    Jiao X; Wu F; Yue X; Yang J; Zhang Y; Qiu J; Ke X; Sun X; Zhao L; Xu C; Li Y; Yang X; Yang G; Gou Z; Zhang L
    Mater Today Bio; 2024 Feb; 24():100936. PubMed ID: 38234459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstoichiometric wollastonite bioceramic scaffolds with core-shell pore struts and adjustable mechanical and biodegradable properties.
    Jin Z; Wu R; Shen J; Yang X; Shen M; Xu W; Huang R; Zhang L; Yang G; Gao C; Gou Z; Xu S
    J Mech Behav Biomed Mater; 2018 Dec; 88():140-149. PubMed ID: 30170193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect.
    Shao H; Ke X; Liu A; Sun M; He Y; Yang X; Fu J; Liu Y; Zhang L; Yang G; Xu S; Gou Z
    Biofabrication; 2017 Apr; 9(2):025003. PubMed ID: 28287077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Appreciable biosafety, biocompatibility and osteogenic capability of 3D printed nonstoichiometric wollastonite scaffolds favorable for clinical translation.
    Wei Y; Wang Z; Lei L; Han J; Zhong S; Yang X; Gou Z; Chen L
    J Orthop Translat; 2024 Mar; 45():88-99. PubMed ID: 38516038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-Shell Bioactive Ceramic Robocasting: Tuning Component Distribution Beneficial for Highly Efficient Alveolar Bone Regeneration and Repair.
    Lei L; Wei Y; Wang Z; Han J; Sun J; Chen Y; Yang X; Wu Y; Chen L; Gou Z
    ACS Biomater Sci Eng; 2020 Apr; 6(4):2376-2387. PubMed ID: 33455330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Core-Shell Biphasic Microspheres with Tunable Density of Shell Micropores Providing Tailorable Bone Regeneration.
    Fu J; Zhuang C; Qiu J; Ke X; Yang X; Jin Z; Zhang L; Yang G; Xie L; Xu S; Gao C; Gou Z
    Tissue Eng Part A; 2019 Apr; 25(7-8):588-602. PubMed ID: 30215296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D printed bioceramic scaffolds: Adjusting pore dimension is beneficial for mandibular bone defects repair.
    Qin H; Wei Y; Han J; Jiang X; Yang X; Wu Y; Gou Z; Chen L
    J Tissue Eng Regen Med; 2022 Apr; 16(4):409-421. PubMed ID: 35156316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell-structured nonstoichiometric bioceramic spheres for improving osteogenic capability.
    Zhuang C; Ke X; Jin Z; Zhang L; Yang X; Xu S; Yang G; Xie L; Prince GE; Pan Z; Gou Z
    J Mater Chem B; 2017 Dec; 5(45):8944-8956. PubMed ID: 32264121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of pore-wall in direct ink writing wollastonite scaffolds favorable for tuning biodegradation and mechanical stability and enhancing osteogenic capability.
    Ke X; Qiu J; Wang X; Yang X; Shen J; Ye S; Yang G; Xu S; Bi Q; Gou Z; Jia X; Zhang L
    FASEB J; 2020 Apr; 34(4):5673-5687. PubMed ID: 32115776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the Osteogenic Capability of Core-Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation.
    Ke X; Zhuang C; Yang X; Fu J; Xu S; Xie L; Gou Z; Wang J; Zhang L; Yang G
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24497-24510. PubMed ID: 28714662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design of nonstoichiometric bioceramic scaffolds via digital light processing: tuning chemical composition and pore geometry evaluation.
    Li Y; Wu R; Yu L; Shen M; Ding X; Lu F; Liu M; Yang X; Gou Z; Xu S
    J Biol Eng; 2021 Jan; 15(1):1. PubMed ID: 33407741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy.
    Bao Z; Yang J; Shen J; Wang C; Li Y; Zhang Y; Yang G; Zhong C; Xu S; Xie L; Shen M; Gou Z
    J Mater Chem B; 2023 Mar; 11(11):2417-2430. PubMed ID: 36809396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Foreign Ion Substitution and Micropore Tuning in Robocasting Single-Phase Bioceramic Scaffolds on the Physicochemical Property and Vascularization.
    Shen J; Wu R; Shen M; Wei Y; Lei L; Chen L; Yang X; Jin Z; Xu S; Gou Z
    ACS Appl Bio Mater; 2020 Jan; 3(1):292-301. PubMed ID: 35019445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Custom Repair of Mandibular Bone Defects with 3D Printed Bioceramic Scaffolds.
    Shao H; Sun M; Zhang F; Liu A; He Y; Fu J; Yang X; Wang H; Gou Z
    J Dent Res; 2018 Jan; 97(1):68-76. PubMed ID: 29020507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yolk-porous shell biphasic bioceramic granules enhancing bone regeneration and repair beyond homogenous hybrid.
    Prince GE; Yang X; Fu J; Pan Z; Zhuang C; Ke X; Zhang L; Xie L; Gao C; Gou Z
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():433-444. PubMed ID: 30948079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual-core-component multiphasic bioceramic granules with selective-area porous structures facilitating bone tissue regeneration and repair.
    Cao B; Xie L; Xu Y; Shen J; Zhang Y; Wang Y; Weng X; Bao Z; Yang X; Gou Z; Wang C
    RSC Adv; 2024 Mar; 14(15):10526-10537. PubMed ID: 38567335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects.
    Shao H; Liu A; Ke X; Sun M; He Y; Yang X; Fu J; Zhang L; Yang G; Liu Y; Xu S; Gou Z
    J Mater Chem B; 2017 Apr; 5(16):2941-2951. PubMed ID: 32263987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D-Printed Bioactive Ca
    Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution.
    Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z
    J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.