BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33738121)

  • 21. Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation.
    Yue X; Zhao L; Yang J; Jiao X; Wu F; Zhang Y; Li Y; Qiu J; Ke X; Sun X; Yang X; Gou Z; Zhang L; Yang G
    Front Bioeng Biotechnol; 2023; 11():1260639. PubMed ID: 37840661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precisely Tuning the Pore-Wall Surface Composition of Bioceramic Scaffolds Facilitates Angiogenesis and Orbital Bone Defect Repair.
    Peng Y; Wang J; Dai X; Chen M; Bao Z; Yang X; Xie J; Wang C; Shao J; Han H; Yao K; Gou Z; Ye J
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):43987-44001. PubMed ID: 36102779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling.
    Zeng H; Pathak JL; Shi Y; Ran J; Liang L; Yan Q; Wu T; Fan Q; Li M; Bai Y
    Biofabrication; 2020 Mar; 12(2):025032. PubMed ID: 32084655
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone tissue regeneration: The role of finely tuned pore architecture of bioactive scaffolds before clinical translation.
    Wu R; Li Y; Shen M; Yang X; Zhang L; Ke X; Yang G; Gao C; Gou Z; Xu S
    Bioact Mater; 2021 May; 6(5):1242-1254. PubMed ID: 33210022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration.
    Zhang W; Feng C; Yang G; Li G; Ding X; Wang S; Dou Y; Zhang Z; Chang J; Wu C; Jiang X
    Biomaterials; 2017 Aug; 135():85-95. PubMed ID: 28499127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimized Bone Regeneration in Calvarial Bone Defect Based on Biodegradation-Tailoring Dual-shell Biphasic Bioactive Ceramic Microspheres.
    Xu A; Zhuang C; Xu S; He F; Xie L; Yang X; Gou Z
    Sci Rep; 2018 Feb; 8(1):3385. PubMed ID: 29467439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematical Evaluation of Mechanically Strong 3D Printed Diluted magnesium Doping Wollastonite Scaffolds on Osteogenic Capacity in Rabbit Calvarial Defects.
    Sun M; Liu A; Shao H; Yang X; Ma C; Yan S; Liu Y; He Y; Gou Z
    Sci Rep; 2016 Sep; 6():34029. PubMed ID: 27658481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrating pore architectures to evaluate vascularization efficacy in silicate-based bioceramic scaffolds.
    Wu F; Yang J; Ke X; Ye S; Bao Z; Yang X; Zhong C; Shen M; Xu S; Zhang L; Gou Z; Yang G
    Regen Biomater; 2022; 9():rbab077. PubMed ID: 35480859
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Extrusion-Microdrilling Approach to Fabricate Calcium Phosphate-Based Bioceramic Scaffolds Enabling Fast Bone Regeneration.
    He F; Lu T; Fang X; Feng S; Feng S; Tian Y; Li Y; Zuo F; Deng X; Ye J
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32340-32351. PubMed ID: 32597161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement in mechanical strength and biological function of 3D-printed trimagnesium phosphate bioceramic scaffolds by incorporating strontium orthosilicate.
    Huang W; Zeng Y; Shuai W; Fu W; Wen R; Li Y; Fu Q; He F; Yang H
    J Mech Behav Biomed Mater; 2024 May; 157():106606. PubMed ID: 38838542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically porous nagelschmidtite bioceramic-silk scaffolds for bone tissue engineering.
    Xu M; Li H; Zhai D; Chang J; Chen S; Wu C
    J Mater Chem B; 2015 May; 3(18):3799-3809. PubMed ID: 32262854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical Effects of 3D-Printed Bioceramic Scaffolds With Porous Gradient Structures on the Regeneration of Alveolar Bone Defect: A Comprehensive Study.
    Yang Z; Wang C; Gao H; Jia L; Zeng H; Zheng L; Wang C; Zhang H; Wang L; Song J; Fan Y
    Front Bioeng Biotechnol; 2022; 10():882631. PubMed ID: 35694236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioceramic scaffolds with triply periodic minimal surface architectures guide early-stage bone regeneration.
    Shen M; Li Y; Lu F; Gou Y; Zhong C; He S; Zhao C; Yang G; Zhang L; Yang X; Gou Z; Xu S
    Bioact Mater; 2023 Jul; 25():374-386. PubMed ID: 36865987
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simultaneous 3D printing process for the fabrication of bioceramic and cell-laden hydrogel core/shell scaffolds with potential application in bone tissue regeneration.
    Raja N; Yun HS
    J Mater Chem B; 2016 Jul; 4(27):4707-4716. PubMed ID: 32263243
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.