BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33738121)

  • 41. 3D printing of Mg-substituted wollastonite reinforcing diopside porous bioceramics with enhanced mechanical and biological performances.
    He D; Zhuang C; Xu S; Ke X; Yang X; Zhang L; Yang G; Chen X; Mou X; Liu A; Gou Z
    Bioact Mater; 2016 Sep; 1(1):85-92. PubMed ID: 29744398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.
    Zhang Y; Xia L; Zhai D; Shi M; Luo Y; Feng C; Fang B; Yin J; Chang J; Wu C
    Nanoscale; 2015 Dec; 7(45):19207-21. PubMed ID: 26525451
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesoporous bioactive glass-coated 3D printed borosilicate bioactive glass scaffolds for improving repair of bone defects.
    Qi X; Wang H; Zhang Y; Pang L; Xiao W; Jia W; Zhao S; Wang D; Huang W; Wang Q
    Int J Biol Sci; 2018; 14(4):471-484. PubMed ID: 29725268
    [No Abstract]   [Full Text] [Related]  

  • 46. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.
    Chen L; Deng C; Li J; Yao Q; Chang J; Wang L; Wu C
    Biomaterials; 2019 Mar; 196():138-150. PubMed ID: 29643002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 3D-printed poly(lactic acid) scaffolds for trabecular bone repair and regeneration: scaffold and native bone characterization.
    Velioglu ZB; Pulat D; Demirbakan B; Ozcan B; Bayrak E; Erisken C
    Connect Tissue Res; 2019 May; 60(3):274-282. PubMed ID: 30058375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects.
    Liu A; Sun M; Shao H; Yang X; Ma C; He D; Gao Q; Liu Y; Yan S; Xu S; He Y; Fu J; Gou Z
    J Mater Chem B; 2016 Jun; 4(22):3945-3958. PubMed ID: 32263094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration.
    Zhao S; Zhu M; Zhang J; Zhang Y; Liu Z; Zhu Y; Zhang C
    J Mater Chem B; 2014 Sep; 2(36):6106-6118. PubMed ID: 32261863
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lyophilized Scaffolds Fabricated from 3D-Printed Photocurable Natural Hydrogel for Cartilage Regeneration.
    Xia H; Zhao D; Zhu H; Hua Y; Xiao K; Xu Y; Liu Y; Chen W; Liu Y; Zhang W; Liu W; Tang S; Cao Y; Wang X; Chen HH; Zhou G
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31704-31715. PubMed ID: 30157627
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.
    Zhang H; Mao X; Du Z; Jiang W; Han X; Zhao D; Han D; Li Q
    Sci Technol Adv Mater; 2016; 17(1):136-148. PubMed ID: 27877865
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro.
    Adel-Khattab D; Giacomini F; Gildenhaar R; Berger G; Gomes C; Linow U; Hardt M; Peleska B; Günster J; Stiller M; Houshmand A; Ghaffar KA; Gamal A; El-Mofty M; Knabe C
    J Tissue Eng Regen Med; 2018 Jan; 12(1):44-58. PubMed ID: 27860335
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Advances in Filament Structure of 3D Bioprinted Biodegradable Bone Repair Scaffolds.
    Lin C; Wang Y; Huang Z; Wu T; Xu W; Wu W; Xu Z
    Int J Bioprint; 2021; 7(4):426. PubMed ID: 34805599
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D plotting of highly uniform Sr
    Zhu H; Zhai D; Lin C; Zhang Y; Huan Z; Chang J; Wu C
    J Mater Chem B; 2016 Oct; 4(37):6200-6212. PubMed ID: 32263632
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration.
    Zhang Y; He F; Zhang Q; Lu H; Yan S; Shi X
    Research (Wash D C); 2023; 6():0255. PubMed ID: 37899773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.
    Lin KF; He S; Song Y; Wang CM; Gao Y; Li JQ; Tang P; Wang Z; Bi L; Pei GX
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6905-16. PubMed ID: 26930140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.