These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33738121)

  • 81. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering.
    Chen M; Zhao F; Li Y; Wang M; Chen X; Lei B
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110153. PubMed ID: 31753368
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Porous Calcium Phosphate Ceramic Scaffolds with Tailored Pore Orientations and Mechanical Properties Using Lithography-Based Ceramic 3D Printing Technique.
    Lee JB; Maeng WY; Koh YH; Kim HE
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30217045
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Engineering scaffolds integrated with calcium sulfate and oyster shell for enhanced bone tissue regeneration.
    Shen Y; Yang S; Liu J; Xu H; Shi Z; Lin Z; Ying X; Guo P; Lin T; Yan S; Huang Q; Peng L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12177-88. PubMed ID: 25033438
    [TBL] [Abstract][Full Text] [Related]  

  • 85. In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells.
    Cao S; Han J; Sharma N; Msallem B; Jeong W; Son J; Kunz C; Kang HW; Thieringer FM
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650530
    [TBL] [Abstract][Full Text] [Related]  

  • 86. 3D printing of conch-like scaffolds for guiding cell migration and directional bone growth.
    Feng B; Zhang M; Qin C; Zhai D; Wang Y; Zhou Y; Chang J; Zhu Y; Wu C
    Bioact Mater; 2023 Apr; 22():127-140. PubMed ID: 36203957
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Advances in 3D-Printed Surface-Modified Ca-Si Bioceramic Structures and Their Potential for Bone Tumor Therapy.
    Truong LB; Medina Cruz D; Mostafavi E; O'Connell CP; Webster TJ
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300763
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review.
    Zhao C; Liu W; Zhu M; Wu C; Zhu Y
    Bioact Mater; 2022 Dec; 18():383-398. PubMed ID: 35415311
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Inverse 3D Printing with Variations of the Strand Width of the Resulting Scaffolds for Bone Replacement.
    Seidenstuecker M; Schilling P; Ritschl L; Lange S; Schmal H; Bernstein A; Esslinger S
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33919880
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Multifunctional 3D-printed bioceramic scaffolds: Recent strategies for osteosarcoma treatment.
    Liu X; Liu Y; Qiang L; Ren Y; Lin Y; Li H; Chen Q; Gao S; Yang X; Zhang C; Fan M; Zheng P; Li S; Wang J
    J Tissue Eng; 2023; 14():20417314231170371. PubMed ID: 37205149
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Toward Smart Biomimetic Apatite-Based Bone Scaffolds with Spatially Controlled Ion Substitutions.
    Cianflone E; Brouillet F; Grossin D; Soulié J; Josse C; Vig S; Fernandes MH; Tenailleau C; Duployer B; Thouron C; Drouet C
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770480
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Correction: Core-shell bioceramic fiber-derived biphasic granules with adjustable core compositions for tuning bone regeneration efficacy.
    Bao Z; Yang J; Shen J; Wang C; Li Y; Zhang Y; Yang G; Zhong C; Xu S; Xie L; Shen M; Gou Z
    J Mater Chem B; 2023 Apr; 11(16):3752-3753. PubMed ID: 37042959
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Emerging applications of 3D printed microporous prosthesis in nonunion repair: mechanisms and therapeutic potential.
    Denour E; Eyen SL
    Ann Transl Med; 2022 Dec; 10(24):1299. PubMed ID: 36660651
    [No Abstract]   [Full Text] [Related]  

  • 94. Three-Dimensional Printing Methods for Bioceramic-Based Scaffold Fabrication for Craniomaxillofacial Bone Tissue Engineering.
    Sheikh Z; Nayak VV; Daood U; Kaur A; Moussa H; Canteenwala A; Michaud PL; de Fátima Balderrama Í; de Oliveira Sousa E; Tovar N; Torroni A; Glogauer M; Talib H; Coelho PG; Witek L
    J Funct Biomater; 2024 Mar; 15(3):. PubMed ID: 38535253
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Polyetheretherketone implants with hierarchical porous structure for boosted osseointegration.
    Chen Z; Chen Y; Wang Y; Deng J; Wang X; Wang Q; Liu Y; Ding J; Yu L
    Biomater Res; 2023 Jun; 27(1):61. PubMed ID: 37370127
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Modularized bioceramic scaffold/hydrogel membrane hierarchical architecture beneficial for periodontal tissue regeneration in dogs.
    Wei Y; Wang Z; Han J; Jiang X; Lei L; Yang X; Sun W; Gou Z; Chen L
    Biomater Res; 2022 Dec; 26(1):68. PubMed ID: 36461132
    [TBL] [Abstract][Full Text] [Related]  

  • 97. In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review.
    Touya N; Washio A; Kitamura C; Naveau A; Tabata Y; Devillard R; Kérourédan O
    Bioengineering (Basel); 2022 Aug; 9(8):. PubMed ID: 36004914
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology.
    Wang J; Tang Y; Cao Q; Wu Y; Wang Y; Yuan B; Li X; Zhou Y; Chen X; Zhu X; Tu C; Zhang X
    Regen Biomater; 2022; 9():rbac005. PubMed ID: 35668922
    [TBL] [Abstract][Full Text] [Related]  

  • 99. BMSCs and Osteoblast-Engineered ECM Synergetically Promotes Osteogenesis and Angiogenesis in an Ectopic Bone Formation Model.
    Zhang C; Xia D; Li J; Zheng Y; Weng B; Mao H; Mei J; Wu T; Li M; Zhao J
    Front Bioeng Biotechnol; 2022; 10():818191. PubMed ID: 35127662
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    Zhang Y; Liang H; Luo Q; Chen J; Zhao N; Gao W; Pu Y; He B; Xie J
    Regen Biomater; 2021 Oct; 8(5):rbab042. PubMed ID: 34408912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.