These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33738682)

  • 1. In the tripartite combination Botrytis cinerea-Arabidopsis-Eurydema oleracea, the fungal pathogen alters the plant-insect interaction via jasmonic acid signalling activation and inducible plant-emitted volatiles.
    Ederli L; Salerno G; Quaglia M
    J Plant Res; 2021 May; 134(3):523-533. PubMed ID: 33738682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea.
    Ingle RA; Stoker C; Stone W; Adams N; Smith R; Grant M; Carré I; Roden LC; Denby KJ
    Plant J; 2015 Dec; 84(5):937-48. PubMed ID: 26466558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of zinc imbalance and salicylic acid co-supply on Arabidopsis response to fungal pathogens with different lifestyles.
    Quaglia M; Troni E; D'Amato R; Ederli L
    Plant Biol (Stuttg); 2022 Jan; 24(1):30-40. PubMed ID: 34608720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutaredoxin ATGRXS13 is required to facilitate Botrytis cinerea infection of Arabidopsis thaliana plants.
    La Camera S; L'haridon F; Astier J; Zander M; Abou-Mansour E; Page G; Thurow C; Wendehenne D; Gatz C; Métraux JP; Lamotte O
    Plant J; 2011 Nov; 68(3):507-19. PubMed ID: 21756272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SQUINT Positively Regulates Resistance to the Pathogen Botrytis cinerea via miR156-SPL9 Module in Arabidopsis.
    Sun T; Zhou Q; Zhou Z; Song Y; Li Y; Wang HB; Liu B
    Plant Cell Physiol; 2022 Oct; 63(10):1414-1432. PubMed ID: 35445272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salicylic acid induced by herbivore feeding antagonizes jasmonic acid mediated plant defenses against insect attack.
    Costarelli A; Bianchet C; Ederli L; Salerno G; Piersanti S; Rebora M; Pasqualini S
    Plant Signal Behav; 2020; 15(1):1704517. PubMed ID: 31852340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection.
    Aubert Y; Widemann E; Miesch L; Pinot F; Heitz T
    J Exp Bot; 2015 Jul; 66(13):3879-92. PubMed ID: 25903915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z
    Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis GOLDEN2-LIKE (GLK) transcription factors activate jasmonic acid (JA)-dependent disease susceptibility to the biotrophic pathogen Hyaloperonospora arabidopsidis, as well as JA-independent plant immunity against the necrotrophic pathogen Botrytis cinerea.
    Murmu J; Wilton M; Allard G; Pandeya R; Desveaux D; Singh J; Subramaniam R
    Mol Plant Pathol; 2014 Feb; 15(2):174-84. PubMed ID: 24393452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea.
    Yang W; Devaiah SP; Pan X; Isaac G; Welti R; Wang X
    J Biol Chem; 2007 Jun; 282(25):18116-18128. PubMed ID: 17475618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens.
    Chen L; Zhang L; Xiang S; Chen Y; Zhang H; Yu D
    J Exp Bot; 2021 Feb; 72(4):1473-1489. PubMed ID: 33165597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Network-Based Comparative Analysis of Arabidopsis Immune Responses to Golovinomyces orontii and Botrytis cinerea Infections.
    Jiang Z; Dong X; Zhang Z
    Sci Rep; 2016 Jan; 6():19149. PubMed ID: 26750561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens.
    Zheng Z; Qamar SA; Chen Z; Mengiste T
    Plant J; 2006 Nov; 48(4):592-605. PubMed ID: 17059405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10.
    Zhang Y; Song RF; Yuan HM; Li TT; Wang LF; Lu KK; Guo JX; Liu WC
    Mol Plant Pathol; 2021 Oct; 22(10):1226-1238. PubMed ID: 34247446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential control and function of Arabidopsis ProDH1 and ProDH2 genes on infection with biotrophic and necrotrophic pathogens.
    Rizzi YS; Cecchini NM; Fabro G; Alvarez ME
    Mol Plant Pathol; 2017 Oct; 18(8):1164-1174. PubMed ID: 27526663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Priming for JA-dependent defenses using hexanoic acid is an effective mechanism to protect Arabidopsis against B. cinerea.
    Kravchuk Z; Vicedo B; Flors V; Camañes G; González-Bosch C; García-Agustín P
    J Plant Physiol; 2011 Mar; 168(4):359-66. PubMed ID: 20950893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis adc-silenced line exhibits differential defense responses to Botrytis cinerea and Pseudomonas syringae infection.
    Chávez-Martínez AI; Ortega-Amaro MA; Torres M; Serrano M; Jiménez-Bremont JF
    Plant Physiol Biochem; 2020 Nov; 156():494-503. PubMed ID: 33049445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infection of Arabidopsis with a necrotrophic pathogen, Botrytis cinerea, elicits various defense responses but does not induce systemic acquired resistance (SAR).
    Govrin EM; Levine A
    Plant Mol Biol; 2002 Feb; 48(3):267-76. PubMed ID: 11855728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    Ferrari S; Plotnikova JM; De Lorenzo G; Ausubel FM
    Plant J; 2003 Jul; 35(2):193-205. PubMed ID: 12848825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.