BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 33738705)

  • 21. Update on Small Molecule Targeted Therapies for Acute Myeloid Leukemia.
    Wang J; Tomlinson B; Lazarus HM
    Curr Treat Options Oncol; 2023 Jul; 24(7):770-801. PubMed ID: 37195589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FLT3 inhibitors in AML: are we there yet?
    Sudhindra A; Smith CC
    Curr Hematol Malig Rep; 2014 Jun; 9(2):174-85. PubMed ID: 24682858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FLT3 Tyrosine Kinase Inhibition as a Paradigm for Targeted Drug Development in Acute Myeloid Leukemia.
    Grunwald MR; Levis MJ
    Semin Hematol; 2015 Jul; 52(3):193-9. PubMed ID: 26111466
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging Targeted Therapy for Specific Genomic Abnormalities in Acute Myeloid Leukemia.
    Chi SG; Minami Y
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic implications of menin inhibition in acute leukemias.
    Issa GC; Ravandi F; DiNardo CD; Jabbour E; Kantarjian HM; Andreeff M
    Leukemia; 2021 Sep; 35(9):2482-2495. PubMed ID: 34131281
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Advances in the pharmacological management of acute myeloid leukemia in adults.
    Numan Y; Abaza Y; Altman JK; Platanias LC
    Expert Opin Pharmacother; 2022 Sep; 23(13):1535-1543. PubMed ID: 35938317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Midostaurin: A New Oral Agent Targeting FMS-Like Tyrosine Kinase 3-Mutant Acute Myeloid Leukemia.
    Stansfield LC; Pollyea DA
    Pharmacotherapy; 2017 Dec; 37(12):1586-1599. PubMed ID: 28976600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From DNA Sequencing to Clinical Trials: Finding New Targeted Drugs for Acute Myeloid Leukemia.
    Yilmaz M; Daver N
    Drugs; 2019 Jul; 79(11):1177-1186. PubMed ID: 31222627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Acute myeloid leukemia].
    Döhner K; Paschka P; Döhner H
    Internist (Berl); 2015 Apr; 56(4):354-63. PubMed ID: 25787321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Philadelphia chromosome-negative acute myeloid leukemia with IDH2 and NPM1 mutations in a patient with chronic myeloid leukemia who showed a major molecular response to tyrosine kinase inhibitor therapy.
    Nakamura F; Arai H; Nannya Y; Ichikawa M; Furuichi S; Nagasawa F; Takahashi W; Handa T; Nakamura Y; Tanaka H; Nakamura Y; Sasaki K; Miyano S; Ogawa S; Mitani K
    Int J Hematol; 2021 Jun; 113(6):936-940. PubMed ID: 33400143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. IDH Inhibitors in AML-Promise and Pitfalls.
    McMurry H; Fletcher L; Traer E
    Curr Hematol Malig Rep; 2021 Apr; 16(2):207-217. PubMed ID: 33939107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gilteritinib use in the treatment of relapsed or refractory acute myeloid leukemia with a
    Ballesta-López O; Solana-Altabella A; Megías-Vericat JE; Martínez-Cuadrón D; Montesinos P
    Future Oncol; 2021 Jan; 17(2):215-227. PubMed ID: 32975130
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute myeloid leukemia transformed to a targetable disease.
    Saleh K; Khalifeh-Saleh N; Kourie HR
    Future Oncol; 2020 May; 16(14):961-972. PubMed ID: 32297538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Development of FLT3 Inhibitors in Acute Myeloid Leukemia.
    Garcia JS; Stone RM
    Hematol Oncol Clin North Am; 2017 Aug; 31(4):663-680. PubMed ID: 28673394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical Utility of Next-Generation Sequencing in Acute Myeloid Leukemia.
    Yang F; Anekpuritanang T; Press RD
    Mol Diagn Ther; 2020 Feb; 24(1):1-13. PubMed ID: 31848884
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein Kinase Inhibitors as Therapeutic Drugs in AML: Advances and Challenges.
    Ling Y; Zhang Z; Zhang H; Huang Z
    Curr Pharm Des; 2017 Nov; 23(29):4303-4310. PubMed ID: 28671056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Novel therapies for acute myeloid leukemia based on genomic aberrations].
    Umezawa Y; Kawamata N
    Rinsho Ketsueki; 2019; 60(6):594-599. PubMed ID: 31281150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute Myeloid Leukemia Mutations: Therapeutic Implications.
    Papayannidis C; Sartor C; Marconi G; Fontana MC; Nanni J; Cristiano G; Parisi S; Paolini S; Curti A
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163594
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Emerging small molecular inhibitors as targeted therapies for high-risk acute myeloid leukemias.
    Sahasrabudhe KD; Albrethsen M; Mims AS
    Expert Rev Hematol; 2023; 16(9):671-684. PubMed ID: 37405412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute myeloid leukemia: advancing clinical trials and promising therapeutics.
    Daver N; Cortes J; Kantarjian H; Ravandi F
    Expert Rev Hematol; 2016 May; 9(5):433-45. PubMed ID: 26910051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.