These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 33739081)
1. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison. Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578 [TBL] [Abstract][Full Text] [Related]
3. Transmembrane Self-Assembled Cyclic Peptide Nanotubes Based on α-Residues and Cyclic δ-Amino Acids: A Computational Study. Blanco-González A; Calvelo M; Garrido PF; Amorín M; Granja JR; Piñeiro Á; Garcia-Fandino R Front Chem; 2021; 9():704160. PubMed ID: 34386480 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Calvelo M; Vázquez S; García-Fandiño R Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433 [TBL] [Abstract][Full Text] [Related]
5. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer. Hwang H J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669 [TBL] [Abstract][Full Text] [Related]
6. Membrane-targeted self-assembling cyclic peptide nanotubes. Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753 [TBL] [Abstract][Full Text] [Related]
7. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Calvelo M; Granja JR; Garcia-Fandino R Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191 [TBL] [Abstract][Full Text] [Related]
8. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285 [TBL] [Abstract][Full Text] [Related]
9. Ion channel models based on self-assembling cyclic peptide nanotubes. Montenegro J; Ghadiri MR; Granja JR Acc Chem Res; 2013 Dec; 46(12):2955-65. PubMed ID: 23898935 [TBL] [Abstract][Full Text] [Related]
10. Simulations of water transport through carbon nanotubes: how different water models influence the conduction rate. Liu L; Patey GN J Chem Phys; 2014 Nov; 141(18):18C518. PubMed ID: 25399183 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of stability and transport of molecules through cyclic peptide nanotube and aquaporin: a molecular dynamics simulation approach. Maroli N; Kolandaivel P J Biomol Struct Dyn; 2020 Jan; 38(1):186-199. PubMed ID: 30678549 [TBL] [Abstract][Full Text] [Related]
12. Study on the Assembly Mechanisms and Transport Properties of Transmembrane End-Charged Cyclic Peptide Nanotubes. Gong T; Fan J J Chem Inf Model; 2021 Jun; 61(6):2754-2765. PubMed ID: 34128668 [TBL] [Abstract][Full Text] [Related]
13. Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Li Z; Song LF; Li P; Merz KM J Chem Theory Comput; 2020 Jul; 16(7):4429-4442. PubMed ID: 32510956 [TBL] [Abstract][Full Text] [Related]
14. Glucose derivatives substitution and cyclic peptide diameter effects on the stability of the self-assembled cyclic peptide nanotubes; a joint QM/MD study. Khavani M; Izadyar M; Housaindokht MR J Mol Graph Model; 2017 Jan; 71():28-39. PubMed ID: 27837688 [TBL] [Abstract][Full Text] [Related]
15. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube. Kim N; Lee JH; Song Y; Lee JH; Schatz GC; Hwang H J Phys Chem B; 2023 Jul; 127(27):6061-6072. PubMed ID: 37369069 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Tarek M; Maigret B; Chipot C Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693 [TBL] [Abstract][Full Text] [Related]
17. Water in Nanopores and Biological Channels: A Molecular Simulation Perspective. Lynch CI; Rao S; Sansom MSP Chem Rev; 2020 Sep; 120(18):10298-10335. PubMed ID: 32841020 [TBL] [Abstract][Full Text] [Related]
18. Exploring Cyclic Peptide Nanotube Stability Across Diverse Lipid Bilayers and Unveiling Water Transport Dynamics. Moral R; Paul S Langmuir; 2024 Jan; 40(1):882-895. PubMed ID: 38134046 [TBL] [Abstract][Full Text] [Related]
19. Electrophoretic Transport of Na(+) and K(+) Ions Within Cyclic Peptide Nanotubes. Carvajal-Diaz JA; Cagin T J Phys Chem B; 2016 Aug; 120(32):7872-9. PubMed ID: 27448165 [TBL] [Abstract][Full Text] [Related]
20. A molecular dynamics investigation on transporting mechanism of glucose through a cyclic peptide nanotube. Joozdani FA; Taghdir M J Biomol Struct Dyn; 2021 Apr; 39(6):2230-2241. PubMed ID: 32249695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]